
Interactive Development of Cross-Device User Interfaces
Michael Nebeling

Department of Computer
Science, ETH Zurich
nebeling@inf.ethz.ch

Theano Mintsi
School of Computer and

Communication Sciences,
EPFL

theano.mintsi@epfl.ch

Maria Husmann
Moira C. Norrie

Department of Computer
Science, ETH Zurich

{husmann,norrie}@inf.ethz.ch

ABSTRACT
Current GUI builders provide a design environment for user
interfaces that target either a single type or fixed set of de-
vices, and provide little support for scenarios in which the
user interface, or parts of it, are distributed over multiple de-
vices. Distributed user interfaces have received increasing at-
tention over the past years. There are different, often model-
based, approaches that focus on technical issues. This paper
presents XDStudio—a new GUI builder designed to support
interactive development of cross-device web interfaces. XD-
Studio implements two complementary authoring modes with
a focus on the design process of distributed user interfaces.
First, simulated authoring allows designing for a multi-device
environment on a single device by simulating other target de-
vices. Second, on-device authoring allows the design pro-
cess itself to be distributed over multiple devices, as design
and development take place on the target devices themselves.
To support interactive development for multi-device environ-
ments, where not all devices may be present at design and
run-time, XDStudio supports switching between the two au-
thoring modes, as well as between design and use modes, as
required. This paper focuses on the design of XDStudio, and
evaluates its support for two distribution scenarios.

Author Keywords
multi-device, distributed user interfaces; simulated
authoring; on-device authoring.

ACM Classification Keywords
H.5.2. User Interfaces: Input devices and strategies

INTRODUCTION
Current GUI builders provide a design environment for user
interfaces that target either a single type or fixed set of de-
vices. In particular, they provide little support for scenarios in
which the user interface may be distributed over multiple de-
vices. Distributed, multi-device user interfaces have received
increasing attention over the past years [18]. There are dif-
ferent, often model-based, approaches that focus on techni-
cal issues, e.g. [12], while only some also address issues and
challenges specific to the design process [11, 14].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI’14, April 26–May 1 2014, Toronto, ON, Canada.
Copyright c© 2014 ACM 978-1-4503-2473-1/14/04...$15.00.
http://dx.doi.org/10.1145/2556288.2556980

This paper presents XDStudio—a new, web-based GUI
builder specifically designed to explore interactive develop-
ment of cross-device user interfaces based on two authoring
modes. In the first, simulated mode, one device is used as the
central authoring device, while target devices are simulated.
In the second, on-device mode, the design process is also co-
ordinated by a main device, but directly involves target de-
vices. In addition, XDStudio distinguishes between use mode
for normal interaction with an interface loaded into our editor
and design mode for direct manipulation of the interface. XD-
Studio enables switching between these modes, allowing the
designer to check the distribution at any moment and return to
the design process for further editing as required. XDStudio
makes the following contributions.

• We explore two scenarios that we developed as interesting
use cases of multi-device, distributed user interfaces and
used to drive the design and evaluation of XDStudio.

• Our notion of distribution profiles at the core of XDStudio
extends existing context models—designed with a single
device and user in mind—to multiple devices and users.

• We present cross-device authoring concepts and tools that
cater for cases where not all devices and users are available,
or where they are even different, at design and run-time.

• Finally, based on a first user study with 12 participants, we
show that it is beneficial to have both modes for simulated
and on-device authoring available, and that on-device au-
thoring is preferred for device-centric scenarios.

We start with a discussion of related work in the next section.
This is followed by two distribution scenarios that XDStu-
dio aims to support. We then present the concepts and tools
of XDStudio, and how they were implemented. Finally, our
user study will be described, analysed and discussed in detail,
before giving concluding remarks.

RELATED WORK
XDStudio draws from research on context-aware adaptation,
multi-device design tools, and distributed user interfaces.

Context-Aware Adaptation
Previous research on model-based user interfaces has con-
tributed a number of different models, languages and tools for
the development of multi-device interfaces. Many solutions
are based on the reference framework described by Calvary et
al. [1]. The common goal is to allow designers to specify in-
terfaces at a high level of abstraction based on the models and
languages. The suggested authoring process typically unfolds

along a four-step, top-down approach, starting with domain
concepts and task modelling, followed by subsequent trans-
formation steps from abstract to concrete and the final user
interfaces. Some approaches support automatic transforma-
tion between some of the levels [10], while others rely more
or less on the designer to perform the mapping manually [19].
In combination with a context and adaptation model, it is pos-
sible to generate operational interfaces suitable for a variety
of use contexts. Yet, context information taken into account
for adaptation commonly concerns a single user and device
at a time, and so would need to be extended to cater for the
forms of cross-device user interfaces considered here.

Multi-Device Design Tools
The authoring of multi-device user interfaces has been the
subject of extensive research [18]. Many different user inter-
face description languages have been proposed. Two widely
studied approaches include TERESA and MARIA that follow
the aforementioned user interface abstraction model and also
support web interface development [19]. While TERESA and
MARIA can be regarded as authoring tools for the underlying
user interface description languages, other examples closer to
WYSIWYG include Damask [11] and Gummy [14].

Damask is a prototyping tool for creating sketches of multi-
device web interfaces. The tool provides a fixed set of user
interface design patterns that are optimised for desktop and
mobile applications including support for speech input and
output. User interfaces are created in layers to indicate the
elements common to all platforms and those specific to a par-
ticular device and/or modality. While the pattern-based ap-
proach showed good results in a study with designers, scal-
ability of the approach is questionable since the system pro-
vides a limited set of design patterns that are not extensible.

Gummy is a design environment for graphical user interfaces
that allows designers to create interfaces for multiple devices
using visual tools that automatically generate and maintain
a platform-independent description of the interface. In ad-
dition, initial designs of the user interface for a new plat-
form can be generated based on existing interfaces created
for the same application. Gummy then maintains consistency
between the different versions and, to ease development for
richer or more limited platforms, it also adapts its authoring
environment for different target platforms.

The original approach based on Gummy has seen a series of
extensions with special tools for managing device-specific in-
terfaces by allowing for cross-device copy-pasting and linked
editing in support of consistency. Furthermore, design tool
macros enable designers to record and share their design ac-
tions across devices and replay them for creating new inter-
faces. The latest extension is GUIDE2ux [13] which provides
on-the-fly feedback about the design by showing whether pre-
set design rules are violated. It also allows designers to in-
spect an interface live on the target device. XDStudio extends
this work by introducing new modes for switching between
live design previews and authoring directly on the devices.

Recent multi-device design tools take additional steps to-
wards collaborative design and crowdsourced adaptation.

Quill [4] supports collaboration between different stakehold-
ers (developer, project manager, support team leader, etc.) by
adopting a model-based design of cross-platform user inter-
faces. CrowdAdapt [17] uses crowdsourcing to collectively
improve the adaptability of a web site under different viewing
conditions. In contrast to Quill, CrowdAdapt builds on direct
manipulation of the final interface without the need of using a
particular web design method or model. XDStudio builds on
this direct manipulation approach, making our tool suitable
for designers with basic web development experience.

Distributed User Interfaces
Researchers have experimented with concepts and techniques
to dynamically support partial or complete distribution of
user interfaces [18]. Different approaches were explored with
object-oriented frameworks such as ZOIL [9], data-oriented
frameworks such as Shared Substance [7] and model-based
frameworks such as [12]. However, compared to XDStu-
dio, they provide little visual support for authoring distributed
user interfaces. Rather, the focus is on powerful and expres-
sive models and languages. As a result, the proposed solu-
tions often tie in with specific programming paradigms, im-
pose multiple different abstraction levels, and even require
proprietary languages for programming and specification. In
the case of web applications, most solutions build on HTML
proxy-based techniques to dynamically push and pull user in-
terfaces [5], a technique that was only recently extended for
interactive customisation of the distribution at run-time [6].

XDStudio draws inspiration from all these works, but extends
existing concepts for interactive cross-device development.
Specifically, based on two different distribution scenarios, we
develop the methods of simulated and on-device authoring
and explore the benefits and tradeoffs of each of them.

SCENARIOS
This section presents two scenarios that XDStudio aims to
support. The first takes place in a meeting room equipped
with multiple interactive devices similar to various intelligent
room projects known from the literature. The second sce-
nario is based on a classroom setting adapted from an inter-
active collaborative learning method [2]. The two scenarios
are different in that the first focuses on collaboration of mul-
tiple types of devices, while the second emphasises different
roles of users participating in the distribution.

Scenario 1: Meeting Room
A team regularly meets up in a modern meeting room to dis-
cuss projects. Each team member brings along personal de-
vices, such as smartphones, tablets, and laptops. Addition-
ally, a large display is installed in the room, which can be used
to project presentations, and a medium-sized touchscreen is
present for displaying complementary information, such as
the agenda, to the group. The team uses the large screen to
present slides taking turns. The current presenter can control
the slide show from their tablet. The other team members
can submit questions and comments from their personal de-
vices, which will also be shown on the presenter’s tablet. A
team member arrives a little later and their device needs to be
integrated into the system while the presentation is already

presenter

slides

comments

&

questions

current

slide

comments

&

questions

project planning

&

meeting agenda

send

comment/

question

teacher
all parameters

solution formula

battery group
battery parameter

wire group
wire parameter

nail group
nail parameter

Figure 1: Characteristics of meeting room and classroom dis-
tribution scenarios

running. Another member is at a different location and would
like to participate remotely. The current slide and the option
to submit questions are available on their mobile phone.

Scenario 2: Classroom
In a classroom, where the teacher and all students are
equipped with tablets, an educational application is used to
teach physics to the students. The application lets the stu-
dents change a set of variables of a simulated experiment, run
it, and view the results. In order to foster interaction, the stu-
dents are split into groups and each group only gets access
to one variable and the result. Each group can manipulate
the variable, but only the teacher has access to the whole ex-
periment and also the underlying formula of the experiment.
After the groups have experimented and discussed the results,
the teacher decides to publish the formula to all the students.

We developed these two scenarios, not only because they il-
lustrate interesting use cases for distributed user interfaces,
but also because they exhibit different characteristics (Fig-
ure 1). The first contains a dynamic set of devices that may
change as users enter or leave the meeting. Also the type of
the device partly determines its role in the scenario, e.g. the
large screen is used to present slides. On the other hand, in
the second scenario, all involved devices are of the same type
and the distribution would be based on the users’ roles.

Based on these scenarios and also taking into account rele-
vant literature, we have derived the following requirements
for XDStudio. Compared to rather high-level requirements
described in the literature, e.g. user interface distribution, mi-
gration and granularity [18] or context-awareness, portability,
scalability and consistency [4], our requirements are more
specific. Moreover, in addition to common design-time re-
quirements, we explicitly distinguish run-time requirements.

Design-Time Requirements
(R1) Detection and integration of present devices
The system must allow the user to design for different device
types [1] and detect devices connected at design-time.

(R2) Design for unknown devices
The system must provide the option to design a distributed
user interface for devices that are not available at design-
time [1].

(R3) User roles
The system must support the design of a distributed inter-
face for diverse user roles [4]. For example, in the classroom
scenario, a different view is created for the students and the
teacher, while both use the same device type.

(R4) Support for designing and testing
The system must allow seamless switching between design
and use of the interface in order to support an incremental
and iterative design process [13].

(R5) Adaptation of user interface elements
The system must support changing the properties of user in-
terface widgets such as size and position in order to accom-
modate different device types [14].

(R6) Adaptation of interaction between devices
The system must support changing how devices interact with
each other [13]. For example, in the classroom, the students
in one group should not be able to interfere with another
group’s experiment.

(R7) Reuse of existing interfaces and distributions
The system must support the reuse of an existing interface,
or parts of it, as well as the definitions of devices and user
roles so that they may be shared among multiple distributed
interfaces [13].

Run-Time Requirements
(R8) Dynamic detection and integration of available devices
The system must detect the devices and users present, provid-
ing each device with the corresponding view of the interface.
The system must support devices joining and leaving at any
point in time.

(R9) Update the distribution at runtime
The system must allow an authorised user to change the in-
terface at run-time. For example, in the classroom scenario,
the teacher updates the distribution during run-time, so that
the students can access the formula only after having done
the exercise.

(R10) Distribution Matching and Adaptation
The system must update the design-time distribution to match
available devices and adapt accordingly to ensure that it is
functional at run-time. For example, if the large screen in the
meeting room scenario is missing, the system should adapt
and show the presentation on another device.

XDSTUDIO
XDStudio was specifically designed for authoring distributed
user interfaces based on three main features. First, it is based
on a new concept of distribution profile that can be used to
specify a distribution scenario in terms of involved devices,
users and target user interfaces. Second, it supports two
complementary authoring modes designed to support inter-
active development and make the design process more flexi-
ble. Third, it can further distinguish between design and use
modes to develop and test distributions as required. Before
discussing the concepts in more detail, we will first give a
walkthrough of the system.

(a) Simulated Authoring (b) On-device Authoring

Figure 2: XDStudio supports a) simulated authoring on a central device and b) on-device authoring directly on target devices, as
well as flexibly switching between both authoring modes to accommodate different distribution scenarios

System Walkthrough
Our walkthrough starts with the simulated, design mode
shown in Figure 2a on the central authoring device. Later,
we will alternate between design and use modes and also
between simulated and on-device modes. As shown in Fig-
ure 2b, the latter directly involves connected target devices in
the authoring process. We will refer to the meeting room and
classroom scenarios presented in the previous section to il-
lustrate how XDStudio may be used to design the distributed
interface in each case. Current support for the requirements
extracted from these scenarios will also be discussed.

Definition of Distribution Profiles
To get started, XDStudio requires the specification of at least
one distribution profile. As illustrated in Figure 3a, the cre-
ation of a profile involves the definition of one or multiple
devices and users involved in the distribution scenario.

As for devices, XDStudio distinguishes between different
types of devices and specific devices based on string iden-
tifiers. The current implementation supports the device types
desktop, tablet, mobile phone and other. Other may be used
to describe types currently not known to the system. Exam-
ples of specific devices include “iPad” for tablet and “iPhone”
for mobile phone. By default, “generic” is used to match
non-specific devices of a given type, e.g. “generic tablet”.
Similarly, XDStudio can associate a profile with user roles.
For example, it is possible to define a role “presenter” or
“teacher” to distinguish users in different roles. The user role
is currently obtained based on the client name, but proper user
identification could be added in the future.

Based on the scenario characteristics summarised in Figure 1,
for the meeting room, a presenter profile could be defined as
“presenter” tablet, a projector profile as other, a touchscreen
profile as desktop, and a mobile profile as mobile phone. On
the other hand, for the classroom, a teacher profile could be
defined as “teacher” tablet, while the three student groups
could be distinguished based on their role in the physics ex-
periment, e.g. “battery-group” tablet for the first group of stu-
dents controlling the battery parameter.

The set of profiles can be modified at any moment during the
authoring process. XDStudio makes all defined profiles avail-
able as toggle buttons, enabling the user to select one or more
profiles and load the associated target user interfaces into the
editor. Figure 2a shows the target interfaces for the mobile,
touchscreen, and projector profiles of the meeting room.

Tools and Modes for Authoring
XDStudio provides an editor that can load and display a
source interface and essentially enable two ways of author-
ing the distribution in terms of target user interfaces (Fig-
ure 3b). For each profile, the user can select which user in-
terface widgets and other elements of the source interface are
to be included in the distribution by dragging and dropping
them from the source interface to the corresponding target in-
terfaces. Alternatively, they can click a button, Full UI, avail-
able for each target interface to insert the full version of the
source interface as a starting point. They may then select spe-
cific interface elements and choose Keep/Remove in order to
include/exclude them from the distribution. To clear the tar-
get interface, they can click the same button for Empty UI.

By default, XDStudio always starts with an empty target in-
terface for a new profile. It may also be configured to always
use the full interface as the starting point instead. The pre-
ferred configuration for this option may depend on the com-
plexity of both the source interface and the distribution sce-
nario in terms of the number of interface widgets that need to
be distributed and the differences between profiles.

XDStudio starts in simulated, design mode. At any time dur-
ing the authoring process, the user is free to alternate between
simulated and on-device modes and between design and use
modes. The selected mode is kept consistent between the cen-
tral authoring device and all simulated or connected devices.

In simulated mode, the authoring process is fully controlled
and carried out only on one device that we refer to as the
central authoring device. All target devices are simulated and
displayed on this device. After switching to on-device mode,
the central authoring device is only used to show the source

(a) Distribution Profiles (b) Authoring Modes and Tools

Figure 3: XDStudio manages distribution profiles for one or multiple devices and users and provides specific authoring tools

interface and defined profiles. The target interfaces are then
instead displayed on the target devices themselves.

While in design mode, all widgets and interactive elements
of the source and target interfaces are disabled. Instead, users
can create and manipulate the target interfaces for the selected
profiles as described above. On the other hand, in use mode,
our authoring tools are disabled so that the source and target
interfaces will again react to user input as if the interface was
loaded directly in the browser rather than in our editor.

Note that, in on-device mode, the central authoring device is
still used to control the authoring process. This is required
to keep the distributed user interface functional in cases when
the source interface is only partially distributed over target de-
vices. Similar to simulated authoring, the Full UI/Empty UI
and Keep/Remove authoring tools are available for the tar-
get interfaces. The distribution can also still be designed via
drag-n-drop. However, this operation now requires dragging
and dropping elements from the source interface to the profile
icons at the bottom of the screen as a reference to the corre-
sponding target interfaces running on the other devices.

To give an example, Figure 2b shows the on-device mode for
the “presenter” tablet profile of the meeting room scenario on
an iPad. Here, the user has just dragged the slideshow presen-
tation widget and dropped it onto the iPad tablet “presenter”
profile icon. The result of this design action is immediately
shown on the iPad. Switching to use mode, if the user now
clicks the Next button, the next slide of the presentation is
simultaneously displayed on all connected devices that have
this widget included in their target interface as well as on the
central authoring device showing the source interface. If the
user wants to somehow modify the distribution, they just need
to switch back to design mode for further editing.

Support for Requirements
The features described above address the majority of require-
ments elicited previously. Our definition and use of distribu-
tion profiles during the authoring process fulfills R1 to R3
as well as R8. XDStudio automatically detects connected de-
vices and integrates them into the authoring process (R1, R8).

Device detection is based on the browser’s user agent string
and logic similar to MobileESP1. Unknown devices such as
the projector in the meeting room scenario can be handled us-
ing XDStudio’s generic devices (R2). Although user login is
not yet properly managed, XDStudio provides basic support
for user roles using the client name (R3). Flexible support for
designing and testing (R4) and for updating the distribution
at run-time (R9) is based on the design and use modes.

Currently, XDStudio only provides initial support for the re-
maining design and run-time requirements. The adaptation
of user interface elements (R5) is a focus of many existing
design tools that was out of scope of our proof-of-concept.
For example, CrowdAdapt [17] implements a set of 7 design
operations for adaptation to both handheld and large-screen
devices. R6 for changing the interaction between devices is
currently only implemented for the basic case of disabling
certain interactions on certain devices in that the elements re-
sponsible for triggering the interaction may be excluded from
the distribution based on the Remove UI Element tool.

Even without full implementation, we will explain below how
R5 to R7 and R10 are covered based on the concepts behind
XDStudio. We also formally show extensibility.

Concepts
The design of distributed user interfaces using XDStudio is
based on a new concept of distribution profile. A distribu-
tion profile describes a distribution in terms of two primary
components. First, it specifies the context in terms of the
devices on which the distributed user interface will be dis-
played, the roles of users that may be handling these devices,
as well as other context factors. Second, based on the source
interface, it specifies the set of target user interfaces in terms
of the elements that will be distributed and their adaptations
with respect to different contexts, e.g. in terms of device char-
acteristics and user requirements. The separation of context
and target user interfaces makes it easier to define and handle
different versions of a distribution and enables reuse between
different user interfaces and distribution scenarios (R7).
1http://blog.mobileesp.com

Formally, context in our concept of distribution profile is
based on the general context representation developed in [15].
XDStudio does not impose a particular context model.
Rather, context is represented based on two sets, NAMES and
VALUES, to denote legal context property names and values.
Based on these two sets, a context dimension represents a
group of context property names that may define a distribu-
tion of certain user interface elements. A context dimension
D is defined as a set of names D = {n1, n2, . . . , nk} to dis-
tinguish k property names such that D ⊆ NAMES. A context
state C of a context dimension D is then represented as

C(D) = {(n, V) | n ∈ D ∧ V ⊆ VALUES},

where ∀ n ∈ D : ∃ (n, V) ∈ C(D). We further define C∗ as
the superset of all context states defined for a distribution.

While it could be extended with other dimensions, e.g. lan-
guage, browser and location, to cater for other user, platform
and environment factors, XDStudio currently distinguishes
only two context dimensions: DDevice = {type, identifier}
and DUser = {role}. Based on these two dimensions, XDStu-
dio can already represent the context states relevant to many
scenarios as subsets of C∗. For example, the meeting room
could be fully described as C∗(DDevice ∪ DUser) = { (type,
{ “desktop”, “tablet”, “phone”, “other” }), (identifier,
{“generic”}), (role, {“presenter” }) }.
Further, XDStudio describes a source interface S as a set
of interface elements E(S) = {e1, e2, . . . , el} where for
1 ≤ i ≤ l : ∃ ei ∈ S. A target interface T for the source
interface S is then defined as a set of interface elements E(S)
and interface adaptations A

T = {(E(S)1, A1), (E(S)2, A2), . . . , (E(S)s, At)}

where for 1 ≤ j ≤ s : ∃ E(S)j ∈ S and 1 ≤ k ≤ t :
Ak ⊆ A∗ = {remove}. Currently, Remove is the only adap-
tation supported by XDStudio. More complex adaptations in
line with requirement R5 could be supported by extending A∗
with a new operator transform = {E(S)j , CSSj}. Fairly
complex adaptations can be performed using CSS3 (see [17]).
Keep is just an empty adaptation ∅.
With the concepts above, we can define a distribution profile
P as a set of context states C and target user interfaces T for
source interface S

P = {(C1, T1(S)), (C2, T2(S)), . . . , (Cq, Tr(S))}

where for 1 ≤ i ≤ q : ∃ Ci ⊂ C∗ and 1 ≤ j ≤ r : Tj(S) ⊆
S. Our definition of distribution profile thus allows all target
interfaces to be defined for one or multiple devices and users,
as well as potentially other context factors. Further, each tar-
get interface part of the distribution is described by a possibly
empty set of elements and adaptations of the source interface.
Note that our definition supports dynamic aspects, such as a
user changing role at run-time or changing device, simply by
changing the context state of the device or user dimension.

While distribution is currently restricted to elements con-
tained in the source interface, the concept could be further
extended in line with requirement R6 to enable substitution

of existing, as well as definition of new, elements and sup-
port new interactions not originally part of the source inter-
face. This could be based on transformations described for
the graceful degradation approach [3] which could substitute
incompatible widgets with new ones better supported by the
platform of a more constrained device. Finally, it would also
be possible to address run-time requirement R10, i.e. to sup-
port dynamic redistribution of target interfaces if the defined
context states are only partially matched or not matched at all.
The first case is possible if the run-time device and user char-
acteristics are significantly different from the ones defined at
design-time. The second case is the result if not all devices
and users defined at design-time are present at run-time. Im-
plementing the above extensions for the concepts in XDStu-
dio, and combining them with the context matching and adap-
tation techniques described in [15], would make it possible
for XDStudio to handle both cases in the future.

Implementation
XDStudio is a web-based authoring environment which
makes the tool accessible from any web-enabled device us-
ing a web browser. On the main screen, the user can load
an existing web site via local or remote URL, which will be
used as the source interface for distribution. This is based on
techniques implemented in [17] that included a study on 50
top web sites showing good compatibility. All parts of the
distributed user interface are continuously monitored and up-
dated if required. This is based on techniques implemented
in [8] using an event replaying mechanism that transmits lo-
cal DOM events to the server, which in turn propagates these
events to the involved clients ensuring state consistency.

The server-side components use jQuery2 on top of the Node.js
platform3. For storage and retrieval of data, we made use
of a MySQL database which communicates with the server
through a pure Node.js JavaScript client implementing the
MySQL protocol4. To push and pull information between the
server and clients, we selected Socket.IO5, a cross-browser
transport mechanism for real-time communication.

The client-side of XDStudio is implemented using HMTL5,
CSS3, jQuery and jQuery UI6 in combination with Touch
Punch7 to support touch interaction. The display and han-
dling of interfaces in the tool itself is realised through the use
of iframes. For the source interface and for every target inter-
face, separate iframes are created. When in design mode, a
transparent overlay is attached over the iframe displaying the
source interface. This disables the interaction with the actual
interface and allows the user to select elements without trig-
gering the original actions. The selected elements can then
be dragged and dropped on an overlay on top of the iframe
for the respective target interface in simulated mode, or di-
rectly on the respective profile icon in on-device mode. If the
user selects Full UI to copy the source interface, all interface
2http://jquery.com
3http://nodejs.org
4https://github.com/felixge/node-mysql
5http://socket.io
6http://jqueryui.com
7http://touchpunch.furf.com

elements are copied by reference and inserted in the target
interface. The overlay for the iframe of the target interface
enables the user to select elements in the same way as be-
fore and exclude them using the Remove tool. When in use
mode, the overlay is detached and DOM events on interface
elements are again detected and handled by the browser.

Current Limitations
Elements excluded from the target interface using Remove
are hidden using CSS. Similar to [17], XDStudio favours
client-side adaptation, but could equally support server-side
adaptation to manipulate the DOM before it is sent to clients.
Whether or not widget behaviour is replicated or modified
primarily depends on the granularity of widgets and which
source interface elements were included in the copy. Dis-
tributed elements are currently referenced via HTML/CSS
#id. Element selection is determined based on the position
of the cursor on the click event. Selection is supported for
all elements with an #id, thus the closest parent element with
an #id is picked upon a click. It would also be possible to
use jQuery selectors8 that do not require an #id attribute for
referencing. DOM similarity matching could be added in the
future to make it more robust to web site evolutions.

Support for advanced forms of interfaces is currently subject
to web standards and native browser support. Most device
capabilities can be accessed through the evolving HTML5
Device API. Similarly, widget behaviour is subject to many
aspects, e.g. browser support, plugins, use of HTML/CSS/JS.
Libraries such as jQuery Mobile could be used to render
widgets in their native look on mobile devices. More ad-
vanced widget behaviour could be introduced through ad-
ditional adaptation operations. There are many frameworks
compatible with XDStudio such as jQMultiTouch [16] which
could be used to support multi-touch interaction modalities.

STUDY DESIGN
We conducted a small user study to experiment with simu-
lated and on-device authoring for the two scenarios presented
previously. Our experiment had two primary goals. First,
we aimed to identify the advantages and limitations of each
mode. Second, we wanted to learn what kind of distribution
tasks may be better supported using each mode. A compar-
ative evaluation with existing tools was not considered since
XDStudio provides a set of unique features for cross-device
development not present in other GUI builders.

Tasks and Procedure
As presented so far, XDStudio supports seamlessly switching
between authoring modes. Yet, to be able to isolate effects,
we designed the experiment around three conditions in which
either only the simulated, only the on-device, or both author-
ing modes were available.

In the first condition, a Windows PC was used as the central
authoring device for both scenarios. In the second condition,
four additional devices (an iPad, an Android phone, an HP
TouchSmart, and a second screen connected to the Windows

8http://api.jquery.com/category/selectors

PC simulating the projector) were used in addition to the cen-
tral authoring device for the meeting room scenario. For the
classroom scenario, an iPad was used in addition to the cen-
tral authoring device simulating the roles of the teacher and
the three different student groups of the classroom experi-
ment. In the third condition, participants had the option of
switching between simulated and on-device authoring mode.

The experiment started with a pre-study questionnaire col-
lecting background information including participants’ expe-
rience with user interface design. The main part of the exper-
iment used a 2x3 design for the controlled variables scenario
(meeting room, classroom) and mode (simulated, on-device,
both). We rotated and counterbalanced the order of scenarios
and modes to reduce carryover effects. Each of the six design
tasks concluded with a post-task questionnaire where users
rated available XDStudio features as well as difficulty and ef-
ficiency of the task. Apart from the subjective feedback, a
logging mechanism automatically recorded all actions such
as when participants switched between design and use mode,
or between simulated and on-device mode when both were
available. Also automatically measured was the time needed
to complete each task, as well as the times spent in simu-
lated and on-device mode in the third condition. Finally, a
post-study questionnaire asked users to rate each mode and
express their preference with respect to each scenario.

Hypotheses
Although the two scenarios are of similar complexity in terms
of the number of distribution profiles, they may require a dif-
ferent approach and allow us to better characterise the fea-
tures of XDStudio. The meeting room involves a device-
centric scenario around a source interface that needs to be
altered for different types of devices, and the target interfaces
are still interconnected. On the other hand, the classroom
scenario is role-centric, where the source interface needs to
be split for different user roles, and the target interfaces are
no longer interconnected.

Accordingly, we formulated the following two hypotheses.

• H1. The scenario has an effect on how simulated and on-
device authoring are used.

• H2. Having both authoring modes available is useful and
makes the design task easier and more efficient.

In particular, we hypothesised that on-device authoring would
be used more in the device-centric meeting room scenario.
Also, participants would rate the condition with both author-
ing modes available as easier and more efficient in the post-
study questionnaire.

Participants
We recruited 12 participants (2 female), aged between 24
and 38 (median 28). Most had a Computer Science back-
ground, basic user interface design experience (median 3,
mode 4, on a 7-point scale from 1 for Novice to 7 for Expert)
as well as some desktop or mobile development experience.

0
2
4
6
8

10
12
14

Simulated On-device Both

Meeting Room Classroom

0
2
4
6
8

10
12
14

Total Both In Sim. In On-d.

Meeting Room Classroom

Figure 4: Average task completion times and distribution
when both modes were available (in minutes; lower is bet-
ter; error bars show standard deviation)

While it is still difficult to recruit participants that would con-
sider themselves expert in cross-device development and dis-
tributed user interfaces, several of them had relevant experi-
ence in the area. Each participant owned at least two interac-
tive devices, such as a mobile phone and a laptop, using them
on a regular basis, i.e. minimum once per day. All partici-
pants were introduced to the tool and used it for the first time
in the experiment.

RESULTS
To complete a task, participants were expected to create the
distribution profiles required for the scenario, design the dis-
tributed user interface version for each of them, and finally
test the target interfaces to verify the result. All participants
successfully completed all six tasks within a 1 to 2 hour-
session. We start with the analysis of the task completion
times in the next section, before discussing user ratings and
our takeaways from the experiment.

We note that the experiment was not fully controlled as it was
primarily designed in a way that might lead to different au-
thoring strategies of users to solve the tasks. For complete-
ness, we include the results of any statistical tests we have
performed. However, we are aware of the limited confidence
given the small number of participants.

Times
Figure 4 shows the average time participants needed to com-
plete each task. First, comparing times between scenarios, we
can see that the meeting room demanded more time. This was
not unexpected since it involves more devices to be handled
and perhaps a more complex user interface, as some of the
user interface elements to be distributed were initially hidden.
This required switches between the design and use modes in
order to interact with the user interface, toggle hidden ele-
ments, and then select them and assign them to the respective
target user interface view. On the other hand, the classroom
scenario involved only one device and perhaps a simpler dis-
tribution with fewer elements compared to the meeting room.

Both scenarios show similar time distributions between
modes, with the simulated mode being the fastest, followed
by the condition where both were available, and finally
the on-device mode. On-device authoring was rather time-
consuming, taking about 35% more time to complete the task
compared to the simulated mode. Comparing between sce-
narios, the differences between the average times for the on-
device and both condition seemed larger.

However, post-hoc RM-ANOVA tests showed no significant
effects for scenario (p > .09) and mode (p > .10) for task

1

2

3

4

5

6

7

Simulated On-device Both

easy efficient overall

(a) Meeting Room Scenario

1

2

3

4

5

6

7

Simulated On-device Both

easy efficient overall

(b) Classroom Scenario

Figure 5: Median ratings for task difficulty and efficiency as
well as overall score (higher is better)

completion times. Still, an interesting observation with both
modes available is that users required slightly more time for
the meeting room, but much longer for the classroom, com-
pared to when only one of the modes was available. This
means that users worked more in on-device mode for the
meeting room with both modes available.

Figure 4 (right) shows a breakdown of the average total ex-
ecution times for the simulated and on-device modes when
both were available in the third condition. Here, it is interest-
ing that the average time spent in simulated mode is longer
for the classroom than for the overall more time-consuming
meeting room scenario. Users also spent twice as much time
in the on-device mode when designing for the meeting room
compared to when designing for the classroom scenario. This
may mean that on-device authoring is more beneficial for
device-centric rather than role-centric scenarios.

While post-hoc RM-ANOVA tests confirmed significant dif-
ferences for mode (p < .01), the differences between sce-
narios were not significant (p > .61). Next we analysed the
subjective feedback obtained from users.

User Feedback
This section analyses user ratings from the post-task and post-
study questionnaires. In the post-task questionnaire, partic-
ipants were asked how easy they found it to complete the
task and how efficient they felt. In addition, they were asked
to rate usefulness, ease of use and effectiveness of available
features including profile creation tools, direct manipulation
tools, the ability to switch between design and use modes, as
well as between simulated and on-device authoring. The post-
study questionnaire asked users to rate the authoring modes
for the two distribution scenarios, which one they would pre-
fer for each scenario, what other features they would like the
tool to support, and if they have other comments. Ratings
were collected using a 7-point Likert scale from 1 for the most
negative and 7 for the most positive score.

Authoring Modes
Figure 5 shows the median ratings users gave after each task
for the meeting room scenario and the classroom scenario,
respectively. For the meeting room, the simulated and both
condition have the same overall score, but users found it eas-
ier to do the task and felt more efficient when both simulated
and on-device modes where available. The on-device author-
ing mode received a relatively lower score. However, for the
meeting room scenario users still found it fairly easy to do
the task, giving a slightly higher score compared to the simu-
lated mode. For the classroom scenario, the overall grade of

the simulated mode exceeds the other two, leaving the both
condition in the second place and on-device last. The same
applies for how easy participants found completing the task
and how efficient they felt under the three conditions.

Post-hoc analysis using Friedman tests found no significant
effect for the authoring mode (p > .29). Also the differences
for task difficulty were not statistically significant (p > .15).
However, the differences in task efficiency showed a signifi-
cant effect (p < .01).

Follow-up pairwise Wilcoxon Signed Ranks Test of whether
scenario has an effect confirmed that participants felt signif-
icantly more efficient in the classroom scenario (p < .04),
where simulated authoring felt most efficient compared to on-
device authoring (p < .02) or when both modes were avail-
able (p < .03). For the meeting room scenario, users felt
significantly more efficient in the both condition compared to
the on-device authoring (p < .03). Here, the other differ-
ences were not significant. However, despite this subjective
feedback about efficiency and the slight edge for the class-
rom scenario, as stated earlier, there were no significant dif-
ferences in mean task performance times between scenarios.

Finally, the average user ratings in terms of whether users
found alternating from one mode to the other useful, easy and
effective were all fairly positive (all between 5 and 6). While
the meeting room received slightly higher scores compared to
the classroom scenario, the differences were not significant.

Design and Use Modes
The feature for switching between design and use mode ob-
tained fairly positive ratings for useful, easy to use, and ef-
fective. While a Friedman test found no significant differ-
ences between scenarios, the feature received slightly higher
scores in the classroom (all medians 6) compared to the meet-
ing room scenario (all medians 5). Given that not all elements
were always visible in the meeting room, users repeatedly had
to go into use mode to switch tab panes in order to view target
elements, and then return to design mode and assign them to
the respective profile. This demanded effort that most users
stated they would preferably avoid. In contrast, the class-
room scenario required fewer switches, and the use mode was
mostly employed to check the final target user interfaces.

Distributon Profiles
As for distribution profiles, users rated the creation of devices
and roles as well as the selection of profiles for designing the
distribution. On average, users were very positive about these
three features giving at least a rating of 6 for useful, easy to
use and effective.

Four participants commented that they preferred on-device
authoring when it comes to profile creation, as information
about connected devices saves times and effort. In this case,
manual creation would only be necessary for devices that are
not available at design-time.

Other Design Tools
The ratings collected for element selection and drag-and-drop
as well as the Full/Empty UI insertion feature were similarly

positive for useful (all medians above 6), easy to use (all me-
dians 5) and effective (all medians above 5.5). Here, it was
interesting to see how the tools were used for the two sce-
narios. In the meeting room scenario, users found it more
efficient to design using element selection and drag-n-drop as
opposed to starting from the full user interface version, where
many hidden elements had to be first uncovered through tog-
gling visibility in the use mode, and then removed. For the
classroom scenario, creating distributions using the Full UI
tool and then removing not required elements was preferred
to manually dragging and dropping each required element,
which seemed less efficient to users. But also drag-n-drop
was used for corrections when required elements had mistak-
enly been removed after the Full UI tool was used to copy the
source interface.

CONCLUSION
Based on these results and our observations during the exper-
iment, we can confirm H1 in that the scenario had a strong
effect on how simulated and on-device authoring were used.
While average task times were not significantly different, par-
ticipants used on-device authoring more in the meeting room
scenario, making it better suited to device-centric scenarios.
However, in cases where the distribution only requires small
changes, e.g. excluding certain elements from the source in-
terface, or if fewer devices are involved, simulated authoring
may still perform better.

Also H2 can be accepted. Our experiment separated simu-
lated and on-device authoring, but based on the results, we
can now say that it is beneficial to have both modes available.
One participant explicitly stated that they would prefer to do
the design using the simulated mode, but also see the changes
on the connected target devices, which was only available in
the on-device mode. While the differences between author-
ing modes and ease of design were not statistically signifi-
cant, users felt significantly more efficient with both modes
available in the meeting room scenario.

Authoring Strategies
Based on our observations and the log files produced during
the experiment, we were able to extract three main themes of
how participants commonly authored cross-device user inter-
faces using XDStudio.

All Profiles First, Widget-driven Distribution
Although participants were completely free in how they
would solve each task, they commonly used the approach of
first creating all distribution profiles before designing the tar-
get user interfaces. However, rather than designing the distri-
bution for one profile after the other, users often focused on
the separate views of the source user interface and distributed
one view after the other. This seemed especially efficient in
the meeting room scenario, where some target user interfaces
shared the same user interface elements such as the projector
and the “presenter” tablet.

Use Mode to Develop Overall Strategy
Another common behaviour of our participants was to ini-
tially switch to use mode to first develop an overall strategy
of the distribution. This was interesting because participants

were first introduced to each source interface, giving them
time to explore it before they were given instructions about
the task. Use mode was also commonly used at the end of
tasks in which on-device mode was not available in order to
verify the distribution.

On-device Mode for Testing and Final Check
We also noticed that when having the option to alternate be-
tween simulated and on-device authoring, the majority of par-
ticipants (8 out of 12) performed the task in at least one of
the scenarios using primarily the simulated mode. They then
switched to the on-device mode mostly to check how the tar-
get user interface was actually displayed on each device.

Limitations
Finally, considering the nature of the scenarios, we note that
the emphasis was on designing for the given distribution and
less on experimenting with different designs of the user inter-
face and distribution according to different goals. Therefore,
all participants focused on performing the design tasks ac-
cording to the task specification and only shortly tested the
target user interfaces to verify the tasks were fulfilled.

To thoroughly investigate how users would interact with the
tool to explore different distributions, as well as testing and
debugging them, additional tasks would have been required.
While we believe this would lead to interesting findings for
XDStudio, we refrained from doing so in our initial user study
due to the already long sessions of one to two hours.

Acknowledgements
The authors would like to thank Pierre Dillenbourg for helpful
discussions on this research. Theano Mintsi was supported
through the Act “I.K.Y Bursary Program process with in-
dividualized assessment, academic year 2011–2012” by the
O.P. resources “Education and Lifelong Learning” of the Eu-
ropean Social Fund (ESF) and the NSRF 2007-2013.

REFERENCES
1. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q.,

Bouillon, L., and Vanderdonckt, J. A Unifying
Reference Framework for Multi- Target User Interfaces.
IWC 15 (2003).

2. Dillenbourg, P., and Hong, F. The mechanics of cscl
macro scripts. CSCL 3, 1 (2008).

3. Florins, M., and Vanderdonckt, J. Graceful Degradation
of User Interfaces as a Design Method for Multiplatform
Systems. In Proc. IUI (2004).

4. Genaro Motti, V., Raggett, D., Van Cauwelaert, S., and
Vanderdonckt, J. Simplifying the Development of
Cross-platform Web User Interfaces by Collaborative
Model-based Design. In Proc. SIGDOC (2013).

5. Ghiani, G., Paternò, F., and Santoro, C. Push and Pull of
Web User Interfaces in Multi-Device Environments. In
Proc. AVI (2012).

6. Ghiani, G., Paternò, F., and Santoro, C. Interactive
customization of ubiquitous web applications. VLC 24, 1
(2013).

7. Gjerlufsen, T., Klokmose, C. N., Eagan, J., Pillias, C.,
and Beaudouin-Lafon, M. Shared Substance:
Developing Flexible Multi-Surface Applications. In
Proc. CHI (2011).

8. Husmann, M., Nebeling, M., and Norrie, M. C.
MultiMasher: A Visual Tool for Multi-Device Mashups.
In ICWE Workshops (2013).

9. Jetter, H.-C., Zöllner, M., Gerken, J., and Reiterer, H.
Design and Implementation of Post-WIMP Distributed
User Interfaces with ZOIL. IJHCI (2012).

10. Limbourg, Q., and Vanderdonckt, J. Multipath
Transformational Development of User Interfaces with
Graph Transformations. In Proc. HCSE. Springer, 2009.

11. Lin, J., and Landay, J. A. Employing Patterns and
Layers for Early-Stage Design and Prototyping of
Cross-Device User Interfaces. In Proc. CHI (2008).

12. Melchior, J., Vanderdonckt, J., and Roy, P. V. A
Model-Based Approach for Distributed User Interfaces.
In Proc. EICS (2011).

13. Meskens, J., Loskyll, M., Seibetaler, M., Luyten, K.,
Coninx, K., and Meixner, G. GUIDE2ux: a GUI Design
Environment for Enhancing the User eXperience. In
Proc. EICS (2011).

14. Meskens, J., Vermeulen, J., Luyten, K., and Coninx, K.
Gummy for Multi-Platform User Interface Designs:
Shape me, Multiply me, Fix me, Use me. In Proc. AVI
(2008).

15. Nebeling, M., Grossniklaus, M., Leone, S., and Norrie,
M. C. XCML: Providing Context-Aware Language
Extensions for the Specification of Multi-Device Web
Applications. WWW 15, 4 (2012).

16. Nebeling, M., and Norrie, M. C. jQMultiTouch:
Lightweight Toolkit and Development Framework for
Multi-touch/Multi-device Web Interfaces. In Proc. EICS
(2012).

17. Nebeling, M., Speicher, M., and Norrie, M. C.
CrowdAdapt: Enabling Crowdsourced Web Page
Adaptation for Individual Viewing Conditions and
Preferences. In Proc. EICS (2013).

18. Paternò, F., and Santoro, C. A Logical Framework for
Multi-Device User Interfaces. In Proc. EICS (2012).

19. Paternò, F., Santoro, C., and Spano, L. MARIA: A
Universal, Declarative, Multiple Abstraction-Level
Language for Service-Oriented Applications in
Ubiquitous Environments. TOCHI 16, 4 (2009).

	Introduction
	Related Work
	Context-Aware Adaptation
	Multi-Device Design Tools
	Distributed User Interfaces

	Scenarios
	Scenario 1: Meeting Room
	Scenario 2: Classroom
	Design-Time Requirements
	(R1) Detection and integration of present devices
	(R2) Design for unknown devices
	(R3) User roles
	(R4) Support for designing and testing
	(R5) Adaptation of user interface elements
	(R6) Adaptation of interaction between devices
	(R7) Reuse of existing interfaces and distributions

	Run-Time Requirements
	(R8) Dynamic detection and integration of available devices
	(R9) Update the distribution at runtime
	(R10) Distribution Matching and Adaptation

	XDStudio
	System Walkthrough
	Definition of Distribution Profiles
	Tools and Modes for Authoring

	Support for Requirements
	Concepts
	Implementation
	Current Limitations

	Study Design
	Tasks and Procedure
	Hypotheses
	Participants

	Results
	Times
	User Feedback
	Authoring Modes
	Design and Use Modes
	Distributon Profiles
	Other Design Tools

	Conclusion
	Authoring Strategies
	All Profiles First, Widget-driven Distribution
	Use Mode to Develop Overall Strategy
	On-device Mode for Testing and Final Check

	Limitations

	REFERENCES

