XDBrowser: User-Defined Cross-Device Web Page Designs

Michael Nebeling and Anind K. Dey
Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA
{ mnebelin, anind } @cs.cmu.edu

ABSTRACT

There is a significant gap in the body of research on cross-
device interfaces. Research has largely focused on enabling
them technically, but when and how users want to use cross-
device interfaces is not well understood. This paper presents
an exploratory user study with XDBrowser, a cross-device web
browser we are developing to enable non-technical users to
adapt existing single-device web interfaces for cross-device
use while viewing them in the browser. We demonstrate that
an end-user customization tool like XDBrowser is a power-
ful means to conduct user-driven elicitation studies useful for
understanding user preferences and design requirements for
cross-device interfaces. Our study with 15 participants elicited
144 desirable multi-device designs for five popular web inter-
faces when using two mobile devices in parallel. We describe
the design space in this context, the usage scenarios targeted by
users, the strategies used for designing cross-device interfaces,
and seven concrete mobile multi-device design patterns that
emerged. We discuss the method, compare the cross-device
interfaces from our users and those defined by developers in
prior work, and establish new requirements from observed user
behavior. In particular, we identify the need to easily switch
between different interface distributions depending on the task
and to have more fine-grained control over synchronization.

Author Keywords
Cross-Device Web Design; End-User Customization Study.

INTRODUCTION

The current proliferation of new devices ranging from smart-
watches and phones, to tablets, to interactive tabletops and
walls has prompted researchers to investigate combined use of
multiple devices. We identify three main research streams.

First, a number of studies have been conducted on multi-device
workflows [6, 17, 28, 30] and specifically cross-device web
use [18, 20, 19, 34]. These studies clearly identified a need to
support sequential and parallel use of multiple devices to more
easily share tasks and interfaces between them. However, they
were insufficient for producing concrete guidelines on how to
adapt existing interfaces for cross-device use.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

CHI’16, May 07-12, 2016, San Jose, CA, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3362-7/16/05$15.00

DOI: http://dx.doi.org/10.1145/2858036.2858048

Second, many different cross-device interaction techniques [3,
4,29, 31, 32] have been explored. While they are promising
for improving cross-device interactions, most techniques are
limited to a particular set of applications or combination of
devices, and are generally not available in current interfaces.

A third stream of research has investigated new cross-device
design tools [5, 7, 8,9, 11, 12, 13, 14, 25, 36]. The vast major-
ity of these tools, however, are targeted at developers, allowing
them to distribute interfaces between devices programmati-
cally or using special authoring tools. While a number of
possible cross-device interfaces were showcased to illustrate
technical support, whether or not these address actual user
needs and are desirable by end-users was not explored.

As part of the XDBrowser project, we are investigating how
existing web browsers can be extended to support parallel
usage of multiple devices as motivated by previous studies.
This paper presents a prototype of XDBrowser that enables
non-technical users to adapt existing single-device interfaces
for cross-device use. We use XDBrowser primarily as a tool
for conducting a user-driven elicitation study on cross-device
interfaces. Asking users to customize and try out alternative
cross-device designs during active use, enabled us to observe
user behavior both when designing and when using cross-
device interfaces. The main contribution of this paper is there-
fore our study, which aims to build a better understanding of
when and how users want to use cross-device interfaces.

Our work is inspired by the early cross-device paper prototyp-
ing study by Hutchings and Pierce [15]. In their study, users
were asked to demonstrate how they would want interfaces to
be distributed between devices when used in different multi-
device environments. Our own research also started out using
paper prototyping to experiment with different cross-device
interfaces and considered designing for many different cross-
device settings. However, we quickly realized that a crucial
element for users is to experience the interaction as closely as
possible to the final interface. We wanted to avoid the three
main limitations we found with their study design.

First, paper prototyping has strong limitations when testing
response times and when comparing small variations of an in-
terface. The latter became particularly evident when designing
for a combination of handheld mobile devices, where inter-
faces are small and preferences depend on the details of the
interaction, making the paper prototyping method unsuitable.

Second, they studied three multi-device settings that resulted
in a rather high-level analysis of user-defined distributions,
mostly showing that users wanted to distribute interfaces in
all conditions, but providing little detail on how. We focus on

one likely cross-device setting using two mobile devices in
parallel to study this in detail.

Third, their study asked users to customize each interface for
one particular task. Our study instead is exploratory in nature,
asking users to customize for all the tasks that they would like
to perform with the cross-device version of the interface and
use the think-aloud protocol to describe how their interactions
and tasks would benefit from cross-device use.

In our study, 15 participants created 144 desirable multi-device
designs for five popular types of interfaces when using two
mobile devices in parallel. We report on usage scenarios sug-
gested by users, the design strategies employed by users when
designing for this cross-device setting, and seven mobile multi-
device design patterns underlying the user-defined interfaces.
Based on user feedback, we analyze both ease of design and
ease of use of different cross-device interfaces and identify the
reasons why some cross-device interfaces were more difficult
to create than others, and how to better support those in future
cross-device design tools. We close with a discussion of our
method and how the user-defined designs from our study com-
pared to developer-defined designs from prior work, as well
as suggesting ways of using our results in future research.

RELATED WORK
We build on prior work on multi-device workflows, cross-
device systems and toolkits, and end-user customization.

Multi-Device Workflows

Early studies by Oulasvirta and Sumari [28] and Dearman
and Pierce [6] in the context of mobile information work
identified a strong need for seamless multi-device interaction
because many activities spanned multiple devices. However,
multi-device workflows had to be carefully planned as they
were commonly hindered by two facts. First, information and
actions are tied to the device rather than the user. Second,
devices are not aware of their role in the user’s larger task.

In addition to the more serial workflows identified by these
works, a recent study by Santosa and Wigdor [30] found new
patterns of parallel device use. Despite widespread adoption
of cloud services for multi-device synchronization, the authors
still report a lack of support for parallelism in cross-device
interactions. Jokela et al. [17] distinguish between resource
lending, related parallel use, and unrelated parallel use. They
identify three challenges users commonly face when using
multiple devices in parallel: deciding which devices to use, ac-
cessing content between devices, and keeping devices updated
and charged. Display size, input capabilities, and level of
multi-tasking support are the main factors in choosing which
device to use in a specific situation.

With a particular focus on cross-device web use, Kane et
al. [18] analyzed web-based usage data across devices and
found that often the same sites were visited in desktop and
mobile settings. Follow-up studies by Karlson et al. [20]
using log analysis identified temporal usage patterns with
information workers as well as strong device preferences for
certain tasks, such as preferring the smartphone for keeping
track of emails and device switching rarely occurring within a

given task. A second screenshot-based diary study [19] found
that smartphone tasks were often suspended until they could be
completed on the PC. They identified and discussed major task
completion barriers such as missing functionality, input/output
challenges, complex tasks and cost/benefit choices.

Together, these studies identify a lack of support for synchro-
nizing relevant task state across devices to make it easy to
transition a task between devices. They also highlight that,
in order for users to benefit from using multiple devices to
complete a task, they need to be able to decompose the task
into meaningful subtasks that they can then distribute and per-
form using multiple devices. Our work adds to these studies
by detailing when and how users want common web brows-
ing tasks to be distributed between multiple devices and the
cross-device interactions demanded by users.

To enable our study, we first studied the technical support
available in existing cross-device systems and tools. Using this
knowledge, we developed our prototype of XDBrowser and
used it as a tool to study user-defined cross-device interfaces.

Cross-Device Systems and Toolkits

Johanson et al. [16] introduced the idea of multibrowsing and
developed special software enabling users to send web pages
to, or open them from, other devices. A lot of the research
since then has focused on improving the technical aspects of
multibrowsing. For example, Ghiani et al. [9] developed push-
and-pull techniques that are not limited to transferring URLSs
between devices, but provide advanced support for HTML
DOM capture and JavaScript state persistence. This enables
full migration between devices and even multiple users, but
comes at the cost of additional infrastructure and requires its
own web proxy-based migration environment [10].

Recently, a number of cross-device systems and toolkits were
proposed. We focus our review on those that informed the
design of XDBrowser’s distribution tools the most.

Panelrama [36] is a web-based toolkit with support for in-
terface division and automated distribution between devices
based on developer-specified groups of web page elements,
so-called panels, and their suitability for distribution. Panels
need to be specified in HTML and panel state captured and
synchronized in JavaScript using shared variables.

With the Tandem Browsing Toolkit [12], developers can create
multi-display web sites consisting of multiple parts which
can be viewed on several devices in parallel. Geared towards
web applications that have stages, e.g., a shopping web site
that consists of a login, item selection and checkout stage,
the toolkit synchronizes transitions from one stage to another
across multiple devices through a finite state machine.

Frosini and Paterno [8] propose a flexible framework based
on the idea of dynamically migrating engines that provides
developers with an API for interface distribution and/or mi-
gration between dynamic sets of devices. Distribution can be
dynamically controlled based on the types of a specific device
or group of devices and the roles associated to a specific user
or groups of users, which can be switched at any time.

XDStudio [25] is the first distributed interface builder follow-
ing a long line of previous multi-device authoring tools such
as Damask [22], Gummy [24] and D-Macs [23]. The specific
focus of XDStudio is on enabling interactive development of
cross-device interfaces by adding cross-device capabilities to
the authoring environment itself. Distributed interfaces can be
designed by simulating target devices, by directly involving
them via on-device authoring, or both. At its core is the notion
of distribution profiles that enable reuse of existing interface
distributions and their adaptation to new cross-device settings
not originally designed for at run-time.

While this past work is very motivating to the goal of enabling
more seamless cross-device interaction, the techniques have
so far been limited to developers. Our goal with XDBrowser
is to adapt and integrate the cross-device support that has al-
ready been implemented and demonstrated as separate systems
targeted at developers. We want this support to be available
directly in a web browser without requiring developers to mod-
ify interfaces to enable cross-device use and without requiring
users to install and use special migration infrastructure and
browsing clients. To avoid these constraints, our prototype
necessarily does not offer a full range of support for cross-
device interfaces. With our prototype, however, non-technical
users are able to browse existing single-device interfaces and
customize them for serial or parallel usage of multiple devices
via built-in visual tools. Most importantly, browser view state
and input can be flexibly controlled and synchronized between
multiple devices. This was crucial for letting users experiment
with different kinds of cross-device interfaces and eliciting
both technical and design requirements from the usage of
XDBrowser and observed user behavior.

End-User Customization

End-user customization techniques commonly aim to em-
power non-technical users with simple and easy-to-use tools
for adapting existing interfaces to their requirements. Our
prototype of XDBrowser adds to the research in this area and
shares commonalities with the following systems.

PageTailor [2] provides end-users on PDAs with a direct ma-
nipulation interface and simple controls for hiding, resizing
and repositioning elements in a web page. Using PageTailor,
web pages can be customized over multiple browsing sessions
and are automatically reconfigured when a page is loaded.

The Highlight [27] system takes the inverse approach in that,
while browsing a web page on the desktop PC, end-users can
demonstrate interactions central to the application for brows-
ing on mobiles. The interaction sequences and corresponding
web page elements are learned and used to generate a smaller,
mobile-friendly version of the original page. Highlight uses a
separate authoring tool that provides a storyboard view and a
preview to browse and refine the mobile versions.

The PlayByPlay system [35] shares browsing sessions in the
form of instant messages that can be executed in another
browser using the CoScripter technology [21]. This is particu-
larly powerful for collaborative web browsing with multiple
users and can also be used for synchronizing web browsing
actions across multiple desktop and mobile devices.

CrowdAdapt [26] builds on crowdsourcing and introduces new
adaptation operations to support, not only desktop-to-mobile
adaptation, but a much wider range of devices including large
screens. With CrowdAdapt, users can interactively adapt the
web page layout similar to PageTailor and share their cus-
tomizations so that others browsing with similar devices can
immediately benefit from user-contributed layouts.

Our XDBrowser prototype extends these techniques so that
existing interfaces can be partitioned, copied and moved be-
tween devices as they are viewed in the browser. Compared
to previous developer-oriented techniques [10, 14, 26, 25, 36]
which are all based on HTML DOM element selection, XD-
Browser does not require the user to understand the page’s
internal structure and composition of the layout. In fact, it
works independent of the HTML DOM and easily caters to
cases where page elements are specified at different levels
of the DOM hierarchy. Inspired by WinCuts [33], we imple-
mented a rectangular selection tool allowing users to frame
any part of the web page that they want to share between de-
vices. In addition, multi-select is supported so that different
parts of the same page can be shared. As a result, web inter-
faces can be cut, copied and moved between devices, making
it as easy as constructing paper prototypes for multi-device
environments [1, 15], but allowing this directly in the browser
via visual tools that are suitable for non-technical users.

CROSS-DEVICE INTERFACES WITH XDBROWSER

Our larger goal with XDBrowser is to support more seamless
cross-device use when browsing on multiple devices in parallel.
We developed a prototype to better understand user needs and
study when and how users want to use cross-device interfaces.
The main idea of our study was to ask users to adapt popular
single-device interfaces for cross-device use as they view and
interact with them using the browser.

XDBrowser supports three common functions for multi-device
interface distribution adapted from existing cross-device sys-
tems and tools: (/) pushing an entire page to a device, (2)
pushing user selected parts of a page, and (3) pulling a page
from another device. When pushing or pulling pages using
these functions, XDBrowser opens the URL in a new tab on
the target device and checks whether the user selected regions
within the page. If that is the case, the page will be split into
the corresponding regions.

To illustrate the three functions and the resulting actions in
XDBrowser, let us use an example. Figure 1 shows a scenario
in which XDBrowser was used to combine a smartphone and
a tablet to work around individual device limitations and max-
imize screen usage by distributing parts of a mail interface.
The phone is used for viewing the inbox and selecting mails
(Step 1)), while the tablet is used as the primary device for
reading mails (Step 2)). Clicking a message on the phone
loads the respective mail on the tablet. This is an example of
the overview+detail design pattern commonly employed by
users to view details on the larger device and keep an overview
on the smaller device.

Users can choose which tabs or shared page they want to
keep in sync. When synchronization is activated for a page,

T wail % | i ai

) http:/igmail com/#?m=mail0

From: Michael To: You (

Welcome to Surface Browser!

& Inbox
N Michael Tasks

Michael Welcome to Surface Browser!

uld be very helpful to get your

x| ©

® hip:/gmail com/#7m=mai0

©
anbox
Michael Tal

 Michael Welchme to Surface Browser!

wal x| @

© = hipgmalcom#mmai0
E==8
& Inbox

« Michasl Tasks ould be very helpful

Michael Welcome to Surface Browser!

Figure 1. Mail interface customized using XDBrowser to view the inbox on a smartphone (Steps Za) select inbox on tablet; 1) push inbox from tablet
to phone; I¢) inbox on phone) and read selected mails on a tablet (Steps 2a) select message on tablet; 2b) push message to tablet; 2c) message on tablet)

XDBrowser will broadcast changes of the viewport and in-
put provided by the user to connected devices. All tabs that
have the same page loaded will be updated with the new view
state and input. XDBrowser automatically activates synchro-
nization for pages pushed to, or pulled from, another device.
Users can toggle synchronization at a per-tab level, or can dis-
able synchronization for all tabs at once to operate the device
completely independently from other connected devices.

XDBrowser supports four synchronization options that can be
toggled to achieve different cross-device interactions:

1. Click sync captures click events at the document level, there-
fore covering the entire page, and replays them in all synced
tabs by locating the target element and triggering the asso-
ciated click handler. To prevent multiple form data submis-
sions, clicks on submit buttons are not replayed.

2. Scroll sync monitors scrolling along both axes and maintains
the scroll state by transferring and setting the scroll position
in proportion to the viewport size on synchronized devices.

3. Input sync captures keyboard, mouse and touch input on any
form input field (text fields, checkboxes and radio buttons,
comboboxes and multi-selects) part of the page. For each

field, the current value is serialized and restored in synced
browser tabs opened on the same and connected devices.

4. URL sync tracks changes to the URL loaded into a tab
including changes to the fragment or hash part. The hash
is not only used by web browsers to jump to anchor links,
but also by many modern web applications, such as GMail,
Google Maps, or YouTube, to store page-internal state, such
as the selected mail folder or message, the location and
zoom level of the map, or the video and timeline index.
When a change of the URL is detected, XDBrowser updates
all synchronized tabs with that URL so that page-internal
state is transferred and updated on all connected devices.

In combination, these four synchronization options enable
XDBrowser to fully restore the browser’s view state and in-
put when a page is shared between devices. Synchronization
keeps the interactions in one tab or shared page synchronized
with all other tabs on the same device or on connected de-
vices that have the same page opened. Therefore, with all
synchronization options enabled, clicking buttons, scrolling
the page, entering form data, and jumping to anchors or mod-
ifying the URL on one device will perform the same action
on all connected devices. Disabling synchronization means
that the interactions on the current device will have no effect

on the other devices. Synchronization can be toggled at any
time so that it is possible to decouple devices to operate them
independently and reintegrate and resynchronize them on de-
mand. Note that this all still works when pages are cut into
regions and even if multiple cuts of the same page are shared
with other devices since XDBrowser only restricts the view-
port according to the user’s selection. This essentially hides,
but does not extract or remove, HTML DOM elements and
therefore does not run the risk of breaking web pages. While
these features may not be sufficient to support all the cross-
device interfaces that could possibly be created with previous
systems and toolkits, our study reported later shows that they
do make XDBrowser a powerful tool for users to explore and
experiment with the kinds of cross-device interfaces they find
useful and usable. We developed the synchronization options
prior to the study and believe they are generic and could apply
to a wider range of applications than the ones we studied.

XDBROWSER IMPLEMENTATION

XDBrowser is implemented as a fullscreen browser interface
running within the OS’s default web browser. The fact that
only native browser features based on HTMLS5 and CSS3 are
used enables XDBrowser to run on any web-enabled device
providing modern browser support, with no need for modifica-
tion or special software, making it a lightweight solution that
can readily be adopted. The browser interface is responsive
to the device in use, enabling its interface to adapt to a wide
range of mobile devices including phones, tablets, and laptops.

XDBrowser uses a client-server architecture. The two main
client-side components are: (1) browser windows containing
the browser’s navigation controls and wrapping the actual web
pages in iframes and (2) selection boxes for cutting browser
windows and transferring parts of a page. When distributing
pages, first the iframe wrapping the entire page is cloned.
For each selection box, the cloned iframe is then wrapped
again in a new container sized to fit the selection box and
translated to match the scroll position. The main components
are implemented using the jQuery Widget Factory. Modernizr
and CSS3 media queries are used for XDBrowser’s responsive
design. Depending on the device’s screen dimensions and
available touch support, either jQuery UI or Hammer.js are
used for draggable and resizable behaviors. The server is
based on Node.js. Socket.IO is used for realtime bidirectional
event-based communication between all connected devices.

While sufficient for our study, this implementation has some
limitations. Our approach works best with pages served locally
or stored offline. Many top sites forbid iframe embedding and
browsers prevent cross-site scripting, but a proxy server fixes
this [9]. For sites that maintain a session, the user needs to
login on each device, but a remote-control architecture [27] or
shared virtual browser such as PhantomJS resolves this [14].

STUDY DESIGN

Our end-user customization study with XDBrowser comprised
three parts. First, a questionnaire collected data on participants’
use of devices and interfaces, their experience using touch as

input and designing interfaces, and demographic information.

They were then introduced to the core features of XDBrowser,

explaining the push-and-pull functions and means for synchro-
nization by showing examples of multi-device distributions.
This part of the study was used both for training and priming
of participants regarding possible cross-device interfaces.

Second, participants were asked to perform five customization
tasks for the interfaces shown in Figure 2. Task order was ran-
domized and counterbalanced between participants. For each
task, participants used XDBrowser on two mobile devices of
different size, a Nexus 4 phone and a Nexus 7 tablet. Using
the features of XDBrowser and the think-aloud protocol, they
were asked to perform each customization task in three steps:
(1) demonstrate a task they commonly perform with the in-
terface, (2) create desirable interface distributions to perform
the task using the two devices in parallel, and (3) perform
the task using the custom cross-device interface. Immediately
after each customization task, participants were given a short
questionnaire where they rated three statements related to the
task: “I would enjoy operating the browser in this manner”,
“It was easy to do the task”, and “The available features were
effective for this task”.

At the end of the study, users filled in a detailed questionnaire
rating various features of XDBrowser. We recruited 15 partici-
pants (10 male, 5 female, median age 28) with high experience
using touch as input (median 6 using 7-point Likert scale) and
intermediate Ul design skills (median 5). All participants indi-
cated high familiarity with the five web sites that our versions
resembled, and owned and used multiple devices on a regular
basis. There was no time limit in the study and participants
were encouraged to try out as many different designs as they
wanted. The study took roughly one hour per participant.

Below we describe the five interfaces used for customization:
mail client, media player, maps viewer, article reader and
slideshow presenter (Figure 2). These interfaces were com-
monly reported in the cross-device literature [4, 8, 11, 25,
36]. We believed that this selection would give us a variety
of interfaces with different requirements and best allow us to
compare the cross-device interfaces designed by our users to
those designed by developers in previous work. All interfaces
were based on real web sites; however, these are highly dy-
namic and personalized. Our versions ensured that the same
content is shown to all participants. Rather than five specific
existing sites, we wanted to test representative but simplified
versions of them to focus users on core page elements.

Mail Interface

Similar to many email clients, the mail interface is composed
of two pages: an inbox and a compose page. The inbox
lists mails and shows the content of a mail selected from the
list. The compose page for writing mails is opened when the
compose button or the reply icon next to each mail is pressed.
With this interface, we were interested in understanding how
users would deal with synchronized pages, showing details of
selected mails, and text input in a multi-device scenario.

Media Interface

Inspired from and implemented using YouTube, the media
interface contains a video player and a playlist with controls
for pausing/resuming playback, muting and unmuting, seeking

Mail

Visual Tour: Studying at ETH Zurich

=0
& Inbox

l- Michael ~ Tasks

Inbox

- Michael Welcome to Surface Browser!
From: Michael To: You ()

Tasks

You can go to the Bookmarks to see the available tasks:
1. Mail

2. Media

3. Maps

4. Atticle
5. Slideshow

Note: The numbers may not necessarily reflect the order in which you will be

w e Compose

To: Michael

Subject
Re: Tasks

Body:

Thanks for letting me know!

Original message

nks">Bookmarks</a
e the available tasks:

1. Mail
2. Media

working on these tasks

Map | Satelite 1. dbstract

3. Requirements

3.1 Scenarios
32. Concepts
Tool Support

4. Research Agenda
5. References

Development

Abstract

hotel Find | [Clear
Zurich
ETH Zurich

ETH Zurich-Hoenggerberg

waae — Article

Frameworks. Languages and Technologies
5. Evaluation Methods

Key Issues in Cross-Device User Interface

Seeteld Previous research has focused on st

i i

levelopment of multi-

Figure 2. The five customization tasks used for the study involved a mail client, a media player, a maps browser, an article reader and a slides viewer.

through the video, as well as rotating through the playlist. The
playlist was restricted to three selected videos. This is an
interesting interface for our study as it raises the question of
which device(s) should play video and/or audio as well as
issues of synchronizing media and controlling playback.

Maps Interface

Based on Google Maps, the maps interface embeds a map that
can be panned and zoomed using gestures. It also has controls
for switching between the map, terrain and satellite views as
well as increasing/decreasing the zoom level. Located below
the map is an input field for text search based on the Google
Places service. For each place found in response to a query
(e.g., “hotel”), a marker will be added to the map. Markers can
be clicked to show additional information. The maps interface
also lists three places that center and zoom the map on the
target location when selected. This interface is interesting due
to the many possible configurations of the map across devices
and in terms of what should and should not be synchronized.

Article Interface

Similar to many online newspapers, blogs and wikis, the ar-
ticle interface shows a table of contents with links to the re-
spective sections in the text, an excerpt of the actual text, and
a list of the references for citations in the text. This interface
is interesting for exploring scrolling and navigation within
larger pages and how the need for these may be reduced with
cross-device use.

Slides Interface

Finally, to cover tasks common to gallery browsing and
slideshow presentations, we included the slides interface. It
consists of the current slide that can be clicked to go to the

next slide, as well as thumbnail previews of the previous and
next slides. Each preview can be clicked to set it as the current
slide. In addition, the interface contained a textarea for notes.
This interface is interesting as all page elements control and
provide a different view on the state of the slideshow.

RESULTS

The main results of our study comprise the usage scenarios
suggested by participants for parallel device use, the design
strategies employed by participants when customizing each
interface, and the design patterns emerging from the different
designs created by participants. They also include participant
feedback in terms of whether they would enjoy using XD-
Browser, its ease of use when customizing each interface, and
the effectiveness of its distribution and synchronization tools.

Cross-Device Interfaces and Usage Scenarios

In total, participants created 144 desirable designs with XD-
Browser for the five interfaces using the two mobile devices.
With an average of 9.6 different designs per participant and
1.92 per participant and task, participants could almost always
think of at least two different ways of customizing and using
each interface in the cross-device setting. We discuss the high-
lights of each customization task below, showing the variety
of cross-device interfaces created using XDBrowser.

Mail Interface

For the mail interface, participants commonly customized for
two primary tasks: reading mails and writing mails. A popular
design for the first task was to use the phone for checking
the inbox and selecting messages that participants then read
on the tablet (Figure 3(a)). However, when they considered
customizing for the second main task, writing mails, they

(a) Mail (Overview+Detail)

(c) Media (Remote-Control)

(e) Article (Overview+Detail)

(d) Maps (Split)

(f) Slides (Extend)

Figure 3. Examples of user-defined cross-device interfaces and the five cross-device design patterns that were most popular for these interfaces.

opted for a different cross-device design. In order to dedicate
one device to input only, in this case, many participants used
the tablet for composing mails and the phone for checking the
inbox and reading mails (Figure 3(b)). They explained that
the on-screen touch keyboard on the tablet is larger and more
comfortable for typing. Since both tasks typically go hand
in hand, participants wanted to quickly switch between the
two different versions optimized for each task. To achieve this
with our current prototype, participants opened two tabs with
the mail interface, one for the customizations for reading and
the other for writing mails. They then synchronized them and
switched tabs according to the task.

Media Interface

The media interface was commonly customized for one task:
playing media. The most frequent cross-device design showed
the video in fullscreen on the tablet and the playback controls
and the playlist on the smartphone (Figure 3(c)). However,
participants distinguished between watching videos by them-
selves and showing videos to others, and made minor modifi-
cations in each case. In the first case, one participant copied
one half of the video player on one device and the other half on
the other device to make full use of the combined screen real
estate. In the second case, another participant kept a smaller
preview of the video on the smartphone for their own refer-

ence. In both cases, participants debated which devices should
play sound. Participants often muted sound on the smartphone
to limit audio to the tablet where speakers are usually better
compared to those on smartphones. Some however played
sound on both devices to have a better stereo effect when
watching videos alone. One participant only played sound on
the smartphone via headphones and watch the video on the
tablet without having to worry about headphone cables. Par-
ticipants also commonly suggested at some stage during the
task that they might want to look up related information on the
smartphone, e.g., movie actors or lyrics for music videos. They
could do this by disabling synchronization on the smartphone
to use it independently from the tablet.

Maps Interface

The maps interface was customized for two primary tasks,
namely for looking up a location on the map and for comparing
maps. For looking up a location, the most popular cross-device
design showed the map using a higher zoom factor on the tablet
for a detailed view and a lower zoom level on the smartphone
for an overview (Figure 3(d)) However, keeping the map views
synchronized was a challenge since participants only wanted
to synchronize the center of the map and not the zoom factor.
This was tricky for XDBrowser’s URL sync since the maps
URL contains both parameters and hence synchronized both

the center and the zoom level of the map view. For comparing
maps, participants created different designs for comparing
either the same location using two different map views or
two different locations. In the first case, designs commonly
showed the default map view on the phone and the terrain or
satellite view on the tablet. These were considered useful for
planning a bike trip and exploring the surroundings for walks
and hikes. In the second case, the phone was used to zoom on
one location and the tablet to zoom on another location. This
was considered helpful for planning a road trip and deciding
where to make a stop. For either task, participants found that
the way XDBrowser currently synchronizes URLs was not
ideal. They therefore only used synchronization up to the
point of loading the maps interface on both devices and then
disabled it to browse the maps independently on each device.

Article Interface

The article interface was customized for the primary task of
reading the text and occasionally checking references. The
most common cross-device design showed the article text on
the tablet for reading and the table of contents and list of ref-
erences on the smartphone (Figure 3(e)). When clicking on
links in the table of contents or the references on the smart-
phone, participants commonly wanted XDBrowser to jump
to the respective passage in the article on the tablet, rather
than scrolling the page on the smartphone. To keep a lock
on these parts of the page, participants cut the interface into
two regions, one containing the table of contents and the other
the references, to remove the article text from the smartphone.
They explained that this design allowed them to use the smart-
phone for overview and reference purposes in support of the
primary task of reading on the tablet.

Slides Interface

Participants customized the slides interface for a primary task,
showing slides, and a secondary task, taking notes. For the
primary task, the most common cross-device design showed
the current slide on the tablet and the slide’s previous and
next previews on the smartphone (Figure 3(f)). For the sec-
ondary task, many wanted to exclusively use the smartphone
for taking notes and show the rest of the interface on the tablet.
Compared to the mail interface, however, they anticipated that
switching between the two designs would not frequently oc-
cur while using the interface. They would either show slides
or review slides and take notes. These two separate activi-
ties therefore did not create the same challenges as for the
mail interface, where quickly switching between different cus-
tomizations was commonly requested.

Design Strategies

In general, while customizing interfaces, participants consid-
ered and weighed the cost associated with using both devices,
and necessarily having to switch between them, as opposed to
just using one device for the task at hand. Although the vast
majority of designs created by participants involved parallel
use of both devices, not all of them did. If participants did not
see the benefit in using both devices, they simply just used one
of the devices for the task.

In observing participants customizing most interfaces for par-
allel multi-device use, we identified three common design

strategies: (/) optimize for screen space, (2) optimize for
input, and (3) minimize device switching.

The first strategy is motivated by participants’ understanding
that combining two devices provides more space for viewing
content than using the devices in isolation. An obvious ex-
ample of this strategy was the media interface with the player
stretching across both devices. Other examples include the
mail design for reading tasks where moving the inbox to the
phone afforded more space on the tablet for reading messages,
and the maps interface with overview and detail views on the
tablet and phone. While we did not measure user performance
during tasks, participants expected that optimizing along the
screen size dimension reduces the time and effort required
for between-page navigation (e.g., inbox vs. compose mail),
within-page navigation (e.g., scrolling the article page), and
panning/zooming (e.g., viewing maps).

The second strategy was based on participants’ preference for
typing on the device with the larger keyboard where they felt
they could type faster and with fewer errors. Clear instances of
this strategy were observed for the mail and slides interfaces,
where synchronization between the smartphone and the tablet
allowed participants to view content on the smartphone while
writing messages or taking notes on the tablet.

The third strategy was to keep the number of device switches
during tasks low. This was exhibited through participants
keeping the interface parts that they commonly required during
a task together on the same device. On the other hand, the
interface parts that helped them transition between tasks were
commonly copied or moved to the other device. Again a good
example is the mail interface where the tablet was used for the
main task, reading messages, and the smartphone for opening
messages on the tablet. This cross-device design only requires
switching between devices when the user wants to select a
different message for reading, which corresponds to starting a
new task. However, when the larger task was writing messages,
participants changed the design to keep the inbox and reading
pane together on one device and used the tablet for writing.

Design Patterns

We reviewed each of the 144 designs created by partici-
pants, extracted common features and grouped the results
into the largest classes. Seven multi-device patterns from three
groups—async patterns, copy and sync patterns, and move
and sync patterns—were identified in two separate passes
and discussed with an independent cross-device researcher.
Figure 4 gives an overview of the design patterns and how fre-
quently they were employed in each customization task, while
Figure 3 illustrates popular designs for the top five patterns.
Below we present the groups and each pattern in turn.

1. Async Patterns
The first group consists of asynchronous multi-device use
patterns, i.e., using devices independently or not in full sync.

Single

While the vast majority were cross-device designs, three de-
signs (2%) used only a single device. Three participants did
not find it beneficial for the media, maps and article tasks

Pattern/Interface |Mail |[Media |Maps |Article [Slides |Total
Async
Single 0 1 1 1 0| 3
Split 1] 1 8 6 0] 16
Overview+Detail 9 2 6 12 3 32
Copy and Sync
Mirror 1] 2 1 1 1 6
Extend 4 6 4 2 6 22
Move and Sync
Remote-Control 4 13 10 4 14| 45
View+Input 13 0 2 0 5 20|
Total 32| 25 32 26 29| 144

Figure 4. Seven multi-device patterns, including five for cross-device use
in parallel, and how often each was suggested in the five customization
tasks. Highest-scoring patterns per task are indicated in gray shading.

to be able to use the two devices in combination and instead
suggested using the original interface on just one of them.

Split

16 designs (11%) used the same interface on both devices in
parallel, but in a not fully synchronized split view. This was
popular for maps, e.g., for route planning and exploring the
surroundings using different map views (Figure 3(d)).

Overview+Detail

With 32 designs (23%), the second most popular pattern was
to have only the parts of the interface that were useful for
overview purposes on one device, and only the parts with
details on the other. This was the most common proposal in
the article task with 12 designs (8%) (Figure 3(e)).

2. Copy and Sync Patterns
The second group consists of patterns in which the page is
copied and fully synchronized between devices.

Mirror

Six designs (4%) assigned equal roles to devices and dupli-
cated the interface. Participants expected that the state of the
interface would be fully synchronized between devices, e.g.,
two suggested it in the media task for playback in stereo.

Extend

22 designs (15%) replicated parts of the interface on the sec-
ond device so that the interface extended across both devices.
For example, a common design for slides was to replicate the
current slide on the second device (Figure 3(f)).

3. Move and Sync Patterns
The third group consists of patterns that move parts of the
page from one device to the other and keep them in sync.

Remote-Control

The most popular pattern with 45 designs (31%) moved parts
of the interface to another device for remote control. This
was most common in the media and slides tasks where it was
popular to have all controls only on the phone (Figure 3(c)).

View+Input

20 designs (14%) used one device for viewing content and the
other for text input. This was most popular for mail with the
phone used for viewing the inbox and the tablet for writing
messages as input was perceived to be easier on the tablet
given the larger virtual keyboard (Figure 3(b)).

o
xX

20% 40% 60% 80% 100%

mail
media
maps
article
slides
mail
media
maps
article
slides
mail
media
maps
article
slides

enjoy

easy

effective

I
I

H1 W2 03 04 05 W6 W7

Figure 5. Post-task feedback on whether participants enjoyed operating
XDBrowser, found the task easy to perform and provided tools effective.

User Feedback

When asked about the main benefits of XDBrowser, one par-
ticipant said: “It lets you take advantage of the strengths of
each device, so that you have the smoothest overall experience”
(P1). It was considered useful for “combining display and
input devices for an improved user experience” (P4) and for
“the fact that you can easily switch from one device to the other
by means of sync” (P9). Participants appreciated XDBrowser’s
“distribution of the view area and the input area to maximize
the view area” (P13) and the ability to “move typing tasks
to the tablet” (P12). Other aspects they highlighted included
that “less scrolling is necessary because I can navigate using
a second device” (P15) and that they could use XDBrowser
“to show to another person what I see on my screen” (P14).

We also asked participants what they think are the main short-
comings of our prototype. In line with the challenges of creat-
ing cross-device interfaces for some tasks, it was considered
necessary to “make it easier to switch between tabs when
combined” (P1). Currently, “too many steps are required for
selecting content to be shared, should be automated for me”
(P3). For some interfaces, some participants were “not sure
all the time what gets synced and what doesn’t” (P15) and
found that “sync control could be more sophisticated” (P5).

From the post-task feedback shown in Figure 5, we can see that
participants enjoyed using XDBrowser for the tasks, found it
easy to perform the tasks and the customization tools creating
cross-device designs effective. Across all tasks, the median
ratings were at or above 5 on a 7-point Likert-scale (7 = best).

Enjoyment

Overall, participants enjoyed using XDBrowser. Two partici-
pants answered that, while the tasks were easy and the features
seemed effective, they would not enjoy using the two devices
in combination for the maps and article interfaces and gave it
a low rating for that reason.

Ease of Use

The mail task was not so easy for three participants who
wanted to open the compose page directly on the other de-
vice without having to first open it on, and then push it to, the
target device, which is currently required. The media task was
not so easy for some participants due to the fact that autoplay
is not available on mobile devices as enforced by the HTMLS

standard, which required the video player to be started once
on each device before it could be synchronized.

Effectiveness

The browser’s features were generally deemed effective with
some differences between tasks. Again, participants gave
lower ratings in the mail and media task for the same issues
noted above. The maps task received several slightly negative
to neutral ratings mainly due to the fact that synchronizing
the map’s bounds between devices meant that also the zoom
level remained in sync. This was contrary to some proposals
of participants who wanted to maintain the same location, but
have different views and zoom levels on the two devices. The
lower ratings in the article task were given by participants
who, as also requested for the mail application, wanted to
open links in the text directly on the other device, rather than
jumping to the anchor on the current device. Finally, the slides
task received lower effectiveness ratings by participants who
wanted to scale the current slide to fill the viewport. This was
also often requested in the media task; however, there it was
not an issue since YouTube supports fullscreen playback.

DISCUSSION

At the highest level, we differentiate distribution and synchro-
nization, and distinguish two distribution methods, copy/move,
and four synchronization options, click/scroll/input/URL sync.
Many different designs were possible and a pattern analysis
grouped the results into the seven largest classes. Our pat-
terns can be seen as distinct but not disjoint, i.e., a particular
design can have elements in common with more than one pat-
tern. Two pieces of information were used for disambiguation:
(i) main function of distributed elements based on separation
of content, navigation and presentation, (ii) participants’ stated
intent behind each distribution and role of each device. Fig-
ure 3(c) is a remote-control example because all navigation
elements were moved to the phone with the intent to control
video playback on the tablet. Figure 3(e) is overview+detail
rather than remote-control although the table of contents with
some navigation elements was moved to the phone because the
intent was still to navigate the article primarily on the tablet.

Several recent works have presented cross-device designs for
mail clients, media players, map browsers, document readers
and gallery viewers similar to the five tasks we studied [4,
8, 11, 25, 36]. However, these were commonly designed
by developers. Many of the designs proposed by develop-
ers can be classified as mirror, extend, remote-control and
overview+detail patterns. While there is agreement in terms
of classification, overall we found much less usage than ex-
pected for some of these patterns in our study. For example,
mirror and extend designs from the copy and sync category
were not very popular among participants. We suspect that
this may have to do with our study only using two devices
and that duplication or replication of interfaces may be more
desired with additional devices. However, this is something
that remains to be established.

Much more popular in our study were the move and sync
patterns instead. Here, the examples shown in the literature
missed some designs frequently created by our participants.
For example, Duet [4], Conductor [11] and Panelrama [36]

all present similar cross-device designs for the mail and maps
interfaces. However, we find two major differences in the
results of our study. First, our study showed a lot of variety
with many different designs from the move and sync pattern
category especially for these two interfaces. Second, none
of them considered different tasks for each interface whereas
our participants distinguished between primary and secondary
tasks for which they wanted different cross-device designs.

The design strategies and patterns we extracted from user-
defined designs establish the variety of desired designs and
the data we collected on user preferences can guide designers
in making informed decisions about choosing the right pattern
for different tasks. Our study helps to provide a better picture
of the mobile cross-device design space and can inform future
design in this context. Our motivation to focus on two mobile
devices was to generate a rich set of patterns for a setting that
is increasingly common [17, 29, 30]. If existing web sites were
to implement our patterns, users would immediately benefit.

Our study also raises new technical and design issues. First,
while users often associated specific roles with devices, the
same users frequently switched them depending on the task.
Our attempt to tackle the issues at the browser rather than in-
terface level is therefore a step in the right direction since the
users themselves can use the tools to easily switch device roles
making their own customizations without having to rely on
developers to make the necessary changes for them. Second,
an important question raised by participants is what is and
what is not synchronized. XDBrowser currently supports four
synchronization options that proved sufficient for customizing
the interfaces for most tasks. However, in some cases, partici-
pants asked for more control while others wanted XDBrowser
to make the decision for them. Our study therefore motivates
further research into the means of providing fine-grained sup-
port and automation of different interface distributions with
synchronization control at the content, navigation and presen-
tation levels. It will also be interesting to study cross-apps
tasks involving multiple web sites. Building on the results of
this paper, these are important avenues for future research.

CONCLUSION

This paper has presented a user study around XDBrowser, a
new kind of web browser we are developing to enable a better
cross-device web browsing experience. XDBrowser extends
previous end-user customization techniques to cross-device
use. Our user study demonstrates its potential to support a
wide range of common web browsing tasks and elicit desirable
cross-device interfaces leading to seven design patterns.

The results generated so far are useful in at least three ways.
First, they provide an overview of possible cross-device de-
signs able to guide developers of distributed interfaces. Sec-
ond, they aid classification of cross-device designs. Third, they
provide a basis for comparison in future cross-device studies.

Acknowledgments

Michael Nebeling started this research with support from
ETH Zurich. It was continued at CMU under mobility grant,
P300P2_154571, by the Swiss National Science Foundation.

REFERENCES

1.

10.

11.

12.

Brian P. Bailey, Jacob T. Biehl, Damon J. Cook, and
Heather Metcalf. 2008. Adapting paper prototyping for
designing user interfaces for multiple display
environments. PUC 12, 3 (2008), 269-277. DOI:
http://dx.doi.org/10.1007/s00779-007-0147-2

. Nilton Bila, Troy Ronda, Igbal Mohomed, Khai N.

Truong, and Eyal de Lara. 2007. PageTailor: Reusable
End-User Customization for the Mobile Web. In

Proc. MobiSys. 16-29. DOI:
http://dx.doi.org/10.1145/1247660.1247666

. Nicholas Chen, Francois Guimbretiere, and Abigail

Sellen. 2013. Graduate Student Use of a Multi-Slate
Reading System. In Proc. CHI. 1799-1808. DOI:
http://dx.doi.org/10.1145/2470654.2466237

. Xiang ‘Anthony’ Chen, Tovi Grossman, Daniel J. Wigdor,

and George W. Fitzmaurice. 2014. Duet: Exploring Joint
Interactions on a Smart Phone and a Smart Watch. In
Proc. CHI. 159-168. D0OT:
http://dx.doi.org/10.1145/2556288.2556955

. Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave: Scripting

Cross-Device Wearable Interaction. In Proc. CHI.
3923-3932. DOI:
http://dx.doi.org/10.1145/2702123.2702451

. David Dearman and Jeffrey S. Pierce. 2008. It’s on my

other computer!: computing with multiple devices. In
Proc. CHI. 767-776. DOI:
http://dx.doi.org/10.1145/1357054.1357177

. Eli Raymond Fisher, Sriram Karthik Badam, and Niklas

Elmqvist. 2014. Designing peer-to-peer distributed user
interfaces: Case studies on building distributed
applications. IJHCS 72, 1 (2014), 100-110. DOTI :
http://dx.doi.org/10.1016/j.ijhcs.2013.08.011

. Luca Frosini and Fabio Paterno. 2014. User Interface

Distribution in Multi-Device and Multi-User
Environments with Dynamically Migrating Engines. In
Proc. EICS. 55-64.DOI:
http://dx.doi.org/10.1145/2607023.2607032

. Giuseppe Ghiani, Fabio Paterno, and Carmen Santoro.

2012. Push and Pull of Web User Interfaces in
Multi-Device Environments. In Proc. AVI. 10-17. DOI:
http://dx.doi.org/10.1145/2254556.2254563

Giuseppe Ghiani, Fabio Paterno, and Carmen Santoro.
2013. Interactive Customization of Ubiquitous Web
Applications. VLC 24, 1 (2013), 37-52. DOI:
http://dx.doi.org/10.1016/j.jv1c.2012.10.005

Peter Hamilton and Daniel J. Wigdor. 2014. Conductor:
Enabling and Understanding Cross-Device Interaction. In
Proc. CHI. 2773-2782. DOI:
http://dx.doi.org/10.1145/2556288.2557170

Tommi Heikkinen, Jorge Goncalves, Vassilis Kostakos,
Ivan Elhart, and Timo Ojala. 2014. Tandem Browsing
Toolkit: Distributed Multi-Display Interfaces with Web
Technologies. In Proc. PerDis. 142—-147. DOI:
http://dx.doi.org/10.1145/2611009.2611026

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Steven Houben and Nicolai Marquardt. 2015.
WatchConnect: A Toolkit for Prototyping
Smartwatch-Centric Cross-Device Applications. In
Proc. CHI. 1247-1256. DOI :
http://dx.doi.org/10.1145/2702123.2702215

Maria Husmann, Michael Nebeling, Stefano Pongelli,
and Moira C. Norrie. 2014. MultiMasher: Providing
Architectural Support and Visual Tools for Multi-Device
Mashups. In Proc. WISE. 199-214. D0OI:
http://dx.doi.org/10.1007/978-3-319-11746-1_15

Heather M. Hutchings and Jeffrey S. Pierce. 2006.
Understanding the Whethers, Hows, and Whys of
Divisible Interfaces. In Proc. AVI. 274-277. DOT:
http://dx.doi.org/10.1145/1133265.1133320

Brad Johanson, Shankar Ponnekanti, Caesar Sengupta,
and Armando Fox. 2001. Multibrowsing: Moving Web
Content across Multiple Displays. In Proc. Ubicomp.
346-353. DOI:
http://dx.doi.org/10.1007/3-540-45427-6_29

Tero Jokela, Jarno Ojala, and Thomas Olsson. 2015. A
Diary Study on Combining Multiple Information Devices
in Everyday Activities and Tasks. In Proc. CHI.
3903-3912. DOI:
http://dx.doi.org/10.1145/2702123.2702211

Shaun K. Kane, Amy K. Karlson, Brian Meyers, Paul
Johns, Andy Jacobs, and Greg Smith. 2009. Exploring
Cross-Device Web Use on PCs and Mobile Devices. In
Proc. INTERACT. 722-735. D01 :
http://dx.doi.org/10.1007/978-3-642-03655-2_79

Amy K. Karlson, Shamsi T. Igbal, Brian Meyers,
Gonzalo Ramos, Kathy Lee, and John C. Tang. 2010.
Mobile Taskflow in Context: A Screenshot Study of
Smartphone Usage. In Proc. CHI. 2009-2018. DOI:
http://dx.doi.org/10.1145/1753326.1753631

Amy K. Karlson, Brian Meyers, Andy Jacobs, Paul Johns,
and Shaun K. Kane. 2009. Working Overtime: Patterns of
Smartphone and PC Usage in the Day of an Information
Worker. In Proc. Pervasive. 398—405. DOI:
http://dx.doi.org/10.1007/978-3-642-01516-8_27

Gilly Leshed, Eben M. Haber, Tara Matthews, and
Tessa A. Lau. 2008. CoScripter: Automating & Sharing
How-To Knowledge in the Enterprise. In Proc. CHI.
1719-1728. DOI:
http://dx.doi.org/10.1145/1357054.1357323

James Lin and James A. Landay. 2008. Employing
Patterns and Layers for Early-Stage Design and
Prototyping of Cross-Device User Interfaces. In
Proc. CHI. 1313-1322.DOI:
http://dx.doi.org/10.1145/1357054.1357260

Jan Meskens, Kris Luyten, and Karin Coninx. 2010.
DMacs: Building Multi-Device User Interfaces by
Demonstrating, Sharing and Replaying Design Actions.
In Proc. UIST. 129-138. DOI:
http://dx.doi.org/10.1145/1866029.1866051

http://dx.doi.org/10.1007/s00779-007-0147-2
http://dx.doi.org/10.1145/1247660.1247666
http://dx.doi.org/10.1145/2470654.2466237
http://dx.doi.org/10.1145/2556288.2556955
http://dx.doi.org/10.1145/2702123.2702451
http://dx.doi.org/10.1145/1357054.1357177
http://dx.doi.org/10.1016/j.ijhcs.2013.08.011
http://dx.doi.org/10.1145/2607023.2607032
http://dx.doi.org/10.1145/2254556.2254563
http://dx.doi.org/10.1016/j.jvlc.2012.10.005
http://dx.doi.org/10.1145/2556288.2557170
http://dx.doi.org/10.1145/2611009.2611026
http://dx.doi.org/10.1145/2702123.2702215
http://dx.doi.org/10.1007/978-3-319-11746-1_15
http://dx.doi.org/10.1145/1133265.1133320
http://dx.doi.org/10.1007/3-540-45427-6_29
http://dx.doi.org/10.1145/2702123.2702211
http://dx.doi.org/10.1007/978-3-642-03655-2_79
http://dx.doi.org/10.1145/1753326.1753631
http://dx.doi.org/10.1007/978-3-642-01516-8_27
http://dx.doi.org/10.1145/1357054.1357323
http://dx.doi.org/10.1145/1357054.1357260
http://dx.doi.org/10.1145/1866029.1866051

24.

25.

26.

217.

28.

29.

30.

Jan Meskens, Jo Vermeulen, Kris Luyten, and Karin
Coninx. 2008. Gummy for Multi-Platform User Interface
Designs: Shape me, Multiply me, Fix me, Use me. In
Proc. AVI. 233-240. DOT:
http://dx.doi.org/10.1145/1385569.1385607

Michael Nebeling, Theano Mintsi, Maria Husmann, and
Moira C. Norrie. 2014. Interactive Development of
Cross-Device User Interfaces. In Proc. CHI. 2793-2802.
DOI:http://dx.doi.org/10.1145/2556288.2556980

Michael Nebeling, Maximilian Speicher, and Moira C.
Norrie. 2013. CrowdAdapt: Crowdsourced Web Page
Adaptation for Individual Viewing Conditions and
Preferences. In Proc. EICS. 23-32. DOI:
http://dx.doi.org/10.1145/2480296.2480304

Jeffrey Nichols, Zhigang Hua, and John Barton. 2008.
Highlight: A System for Creating and Deploying Mobile
Web Applications. In Proc. UIST. 249-258. DOI:
http://dx.doi.org/10.1145/1449715.1449757

Antti Oulasvirta and Lauri Sumari. 2007. Mobile Kits
and Laptop Trays: Managing Multiple Devices in Mobile
Information Work. In Proc. CHI. 1127-1136. DOI:
http://dx.doi.org/10.1145/1240624.1240795

Roman Ridle, Hans-Christian Jetter, Mario Schreiner,
Zhihao Lu, Harald Reiterer, and Yvonne Rogers. 2015.
Spatially-aware or Spatially-agnostic?: Elicitation and
Evaluation of User-Defined Cross-Device Interactions. In
Proc. CHI. 3913-3922. DOTI:
http://dx.doi.org/10.1145/2702123.2702287

Stephanie Santosa and Daniel Wigdor. 2013. A Field
Study of Multi-Device Workflows in Distributed

31.

32.

33.

34.

35.

36.

Workspaces. In Proc. UbiComp. 63—72. DOI:
http://dx.doi.org/10.1145/2493432.2493476

Dominik Schmidt, Julian Seifert, Enrico Rukzio, and
Hans Gellersen. 2012. A Cross-Device Interaction Style
for Mobiles and Surfaces. In Proc. DIS. 318-327. D01 :
http://dx.doi.org/10.1145/2317956.2318005

Teddy Seyed, Chris Burns, Mario Costa Sousa, Frank
Maurer, and Anthony Tang. 2012. Eliciting Usable
Gestures for Multi-Display Environments. In Proc. ITS.
41-50. DOI :http://dx.doi.org/10.1145/2396636.2396643

Desney S. Tan, Brian Meyers, and Mary Czerwinski.
2004. WinCuts: Manipulating Arbitrary Window Regions
for More Effective Use of Screen Space. In Proc. CHI EA.
1525-1528. DOTI:
http://dx.doi.org/10.1145/985921.986106

Minna Wiljas, Katarina Segersthl, Kaisa
Viidnidnen-Vainio-Mattila, and Harri Oinas-Kukkonen.
2010. Cross-Platform Service User Experience: A Field
Study and an Initial Framework. In Proc. Mobile HCI.
219-228.D0OI:
http://dx.doi.org/10.1145/1851600.1851637

Heather Wiltse and Jeffrey Nichols. 2009. PlayByPlay:
Collaborative Web Browsing for Desktop and Mobile
Devices. In Proc. CHI. 1781-1790.
http://doi.acm.org/10.1145/1518701.1518975

Jishuo Yang and Daniel Wigdor. 2014. Panelrama:
Enabling Easy Specification of Cross-Device Web
Applications. In Proc. CHI. 2783-2792. DOI:
http://dx.doi.org/10.1145/2556288.2557199

http://dx.doi.org/10.1145/1385569.1385607
http://dx.doi.org/10.1145/2556288.2556980
http://dx.doi.org/10.1145/2480296.2480304
http://dx.doi.org/10.1145/1449715.1449757
http://dx.doi.org/10.1145/1240624.1240795
http://dx.doi.org/10.1145/2702123.2702287
http://dx.doi.org/10.1145/2493432.2493476
http://dx.doi.org/10.1145/2317956.2318005
http://dx.doi.org/10.1145/2396636.2396643
http://dx.doi.org/10.1145/985921.986106
http://dx.doi.org/10.1145/1851600.1851637
http://doi.acm.org/10.1145/1518701.1518975
http://dx.doi.org/10.1145/2556288.2557199

	Introduction
	Related Work
	Multi-Device Workflows
	Cross-Device Systems and Toolkits
	End-User Customization

	Cross-Device Interfaces with XDBrowser
	XDBrowser Implementation
	Study Design
	Results
	Cross-Device Interfaces and Usage Scenarios
	Design Strategies
	Design Patterns
	1. Async Patterns
	2. Copy and Sync Patterns
	3. Move and Sync Patterns

	User Feedback

	Discussion
	Conclusion
	REFERENCES

