
XDBrowser 2.0: Semi-Automatic Generation of
Cross-Device Interfaces

Michael Nebeling
University of Michigan School of Information

nebeling@umich.edu

ABSTRACT
Several recent studies have highlighted the need to support
parallel usage of multiple devices for cross-device use. Yet,
most interfaces today are still designed for single-device use
and require re-authoring to enable cross-device interaction.
This paper presents two studies to inform the design of a
new web browser with support for semi-automatic genera-
tion of cross-device interfaces. Based on the results of a re-
cent study in which users manually customized web pages for
cross-device use, our first study elicits from users how they
might want to trigger popular cross-device patterns to trans-
form single-device designs with relatively little effort. Our
second study then examines how the emerging design pat-
terns could be applied to the Alexa top 50 sites from 10 differ-
ent genres. Based on these studies, we design semi-automatic
techniques for page segmentation and distribution between
multiple devices that can work on many existing web sites
and require only minimal user input to switch between dif-
ferent cross-device designs. Finally, we discuss possible ex-
tensions to the Chrome web browser to make the techniques
available for a wide range of desktop, mobile, and wearable
devices, and successfully test them on popular web sites.

Author Keywords
distributed user interfaces; cross-device interaction;
semi-automatic page segmentation.

ACM Classification Keywords
H.5.2. Information interfaces and presentation: User Inter-
faces. – Screen design.

INTRODUCTION
State-of-the-art web browsers have added support for keep-
ing the browser history, bookmarks and settings in sync so
that users can use multiple personal devices for browsing the
web. This partly addresses the need for more seamless multi-
device interaction identified in earlier studies on information
workers and cross-device web use [11, 20, 22, 29]. More re-
cent studies [26, 32] find an increased need to better support
parallel device usage so that users can flexibly distribute tasks
between devices, taking into account both device capabilities

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06 – 11, 2017, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025547

(a) Remote control of mail reading pane on the tablet from the phone

(b) Cut and paste inbox on phone (c) Cut and paste mail on tablet

Figure 1. Re-authoring required in XDBrowser [26] to distribute parts
of a mail interface between phone and tablet. This paper presents two
studies around semi-automatic generation of such cross-device versions.

and user preferences. However, there is no native browser
support for using multiple devices in parallel. Rather, special
cross-device development toolkits and major modifications to
existing web interface code are required [12, 17, 27, 40].

The XDBrowser project investigates how web browsers can
be improved to better support parallel multi-device usage.
A first version of XDBrowser [26] implemented end-user
customization tools allowing users to re-author existing web
pages so that they can be distributed and synchronized be-
tween multiple devices (Figure 1). XDBrowser was then used
in an end-user customization study that produced a total of
144 multi-device designs for five popular web applications,
leading to seven mobile multi-device patterns. While that ver-
sion of XDBrowser proved particularly useful for that study,
still significant manual re-authoring was required. Given the
patterns, we ask how cross-device design can be automated.

Providing automated support for customization could be ben-
eficial to users for several reasons. First, it would avoid the
need for a separate customization mode and for mode switch-
ing to be able to customize pages for cross-device use. Sec-
ond, users could browse new pages they have not visited be-
fore, without having to first customize them for cross-device
use if they want to benefit from XDBrowser. Third, users



could just choose from cross-device designs and switch be-
tween them depending on the type of page and browsing task.

However, there are two main obstacles. First, while we know
what cross-device patterns users want and that they need to
able to switch patterns for different tasks, we do not know
how users would want to do that. Second, while we know
that pages need to be split into the elements relevant for each
pattern before they can be distributed, this problem has been
sidestepped until now, either by having users manually select
page elements [26, 14, 27] or by having developers manually
annotate the respective HTML DOM nodes [12, 17, 40].

Taking the work by Nebeling and Dey [26] further, this paper
explores a mixed-initiative approach to cross-device interface
design based on existing cross-device patterns and new semi-
automatic support. We believe that it is possible to design
semi-automatic support that does not require cross-device re-
authoring but still leaves end-users in control, and that this
opens up a rich research space that the community can ex-
plore together. To make a start, this paper presents two studies
that investigate such an approach for existing web interfaces:

1. a first study (N=16) on user-defined interactions in three
mobile settings that make it possible for end-users to easily
activate and switch between cross-device patterns,

2. a second study (N=3) on user-defined segmentations of
popular web pages based on existing cross-device patterns
to test the extent to which these patterns can be automated.

Informed by both studies, we also present a new XDBrowser
prototype that can semi-automatically generate cross-device
versions of existing pages by extracting and distributing page
elements relevant for each pattern, and a proof-of-concept im-
plementation for existing web browsers on desktop, mobile
and wearable devices. However, we see the resulting system
as a proof of concept—the studies are the main contribution.

We start in the next section with an overview of the existing
XDBrowser and the seven multi-device patterns from [26],
before detailing our new studies’ designs and results.

XDBROWSER + PATTERNS OF CROSS-DEVICE WEB USE
XDBrowser builds on the early notion of multibrowsing de-
veloped by Johanson et al. [19], allowing web pages to be
sent to, and opened from, multiple devices. The first version
of XDBrowser had the goal of enabling end-users to re-author
web pages for cross-device use as they view them directly in
the browser. Inspired by WinCuts [36], it provided a rectan-
gular selection tool for users to frame arbitrary regions in the
web page that they could then copy or move between devices,
without the need for HTML DOM-level coding (Figure 1).

XDBrowser supports synchronization of both the view and
the input on multiple devices. This is based on a record-and-
replay mechanism capturing four types of events: (1) click
events in the document via the mouse or finger, (2) scroll
events manipulating the viewport, (3) form input events and
(4) updates of the URL. This level of support is sufficient for
users to control the browser tabs, page viewports, view state,

and user input on all connected devices. More advanced de-
vice migration techniques able to preserve page-internal state
and server-side sessions [14, 28] were out of scope.

An end-user customization study with 15 participants probed
desirable multi-device page distributions when using a phone
and tablet in parallel [26]. Five applications representing pop-
ular web browsing activities were examined and the study
produced a total of 144 multi-device designs. These fall into
three groups of cross-device patterns (Figures 2 to 4).

1. Copy and Sync Patterns: Duplicate/Extend

(a) Duplicate pattern (b) Extend pattern

Figure 2. Copy and sync patterns
The first group consists of patterns in which the page is copied
and fully synchronized between devices. The duplicate pat-
tern assigns equal roles to devices, duplicates the entire page,
and keeps the view fully synchronized between devices. The
extend pattern (Figure 2(b)) replicates page elements on the
other device so that parts of the page extend across devices.

2. Move and Sync Patterns: Remote-Control/View+Input

(a) Remote-control pattern (b) View+input pattern

Figure 3. Move and sync patterns
The second group consists of patterns that move parts of the
page to other devices and sync all parts between devices as
though they formed a single page. First, the remote-control
pattern (Figure 3(a)) keeps controls such as navigation links
and buttons on one device and moves the other elements
over. Second, the view+input pattern (Figure 3(b)) assigns
an input-only role to one device, keeps form elements such as
input fields and selection lists on it, and moves the others.

3. Async Patterns: Overview+Detail/Split/Single
The last group consists of patterns of asynchronous device
usage. The overview+detail pattern (Figure 4(a)) keeps the
overview on one device but zooms the view on the other for
details. The split pattern (Figure 4(b)) uses the same page
on both devices but shows different views between devices.



(a) Overview+detail pattern (b) Split pattern

Figure 4. Async patterns

Finally, the single pattern loads the page on only one device
and does not use the second device. Technically, this is not a
cross-device pattern but was included for completeness.

While knowing the cross-device patterns was a first impor-
tant result for designing more automatic cross-device inter-
face support, there were still several open questions.

First, just for the five web pages used in the study, users
spent roughly one hour designing cross-device versions. Re-
authoring pages required switching between browsing and
customization modes, executing a series of page manipula-
tions, and switching between devices. We wanted to reduce
this effort by introducing more automatic support.

However, participants’ preferences for patterns varied not
only between the five tested applications, but also depend-
ing on the tasks carried out with each application. There-
fore, users wanted to activate patterns with little effort and
also choose different patterns for different distributions of the
same interface. A fully automatic approach was not feasible.

Our new goal then became to develop a mixed-initiative ap-
proach by developing semi-automatic support to split and dis-
tribute web pages between multiple devices. However, the
first XDBrowser study [26] had different goals and provided
limited insight so that additional studies were required to in-
form the design of a system following this new approach.

First, the earlier study focused on finding cross-device design
patterns, not on finding a “good” interaction set for users to
activate such patterns. Second, the patterns were derived in a
study of only five sample web pages, and limited to settings
with a phone and tablet. Thus, we were interested to see how
the patterns might generalize to a larger set of popular web
sites and settings with different and more than two devices.

INTUITION BEHIND SEMI-AUTOMATIC APPROACH
Consider the mail interface in Figure 1 where the inbox and
message reading pane are distributed between phone and
tablet. To distribute the elements in this way, the first version
of XDBrowser required users to perform a series of manual
selections and manipulations of page elements. The goal of
our new techniques is to avoid the need for re-authoring.

Our main inspiration comes from the way many mobile
browsers allow users to quickly zoom in and out to view dif-
ferent portions of the page in more detail. The idea is to allow
users to invoke an interaction to zoom page elements on one

Figure 5. Classification of HTML DOM nodes for mail interface

(a) Remote-control pattern

(b) Overview+detail pattern

Figure 6. Segmentation and triggered patterns for mail interface (star
marks device and element invoked by a user-defined interaction)

device and, as the view is zoomed, activate a suitable cross-
device pattern and make use of connected devices by showing
relevant parts of the page that were pushed out of the view.

Figure 5 illustrates how the inbox and message elements are
composed from nested HTML DOM nodes. Figure 6 illus-
trates the page segmentation relevant for two of the patterns
we want to automate, remote-control and overview+detail.

Selecting a message in the inbox controls which message is
shown in the reading pane. Hence, the remote-control pat-
tern should become active when the user invokes the inbox
element on one device. The inbox should be zoomed on that
device and the message moved to the other device. For such
a distribution, we would need to traverse the DOM tree from
the node that first received the user input event upwards until
we find the node wrapping the inbox element, i.e., the DIV
with id “inbox” (Figure 5). This node is characterized by
having an id attribute and containing a set of BUTTON and
LI nodes with onclick event handlers, indicating that it is a
“control” node. To obtain the pattern, we can zoom this node



on the phone and remove it on the tablet so that the message
gets zoomed there instead (Figure 6(a)).

On the other hand, if the message element which does not
contain any “control” nodes is invoked, the overview+detail
pattern should become active instead. The message read-
ing pane should be zoomed on the current device and the
overview should be kept on the other device. The message
element is composed of several nested DIV nodes with id
“header”, “title”, and “body”. Since all of them have the
same width as the “message” DIV, zooming any of them has
the same effect as zooming the “message” DIV directly. To
obtain the pattern, we can zoom either node on the current de-
vice and keep the overview on the other device (Figure 6(b)).

In the following, we present two studies to design such cross-
device support, the first to identify desirable interactions for
activating the different patterns, and the second to develop a
segmentation method that can find corresponding nodes.

STUDY 1: USER-DEFINED INTERACTIONS
In [26], participants were asked to create desirable cross-
device interfaces using XDBrowser’s customization tools.
That study focused on what kinds of cross-device interfaces
users would want, and identified seven multi-device design
patterns. The present study instead asks how users would
want to obtain such interfaces. Specifically, we seek simple
user-defined interactions (1) for selecting a cross-device pat-
tern to transform a single-device design, and (2) for switching
between different cross-device patterns. Interaction propos-
als must be coherent, implementation in XDBrowser feasible,
and the number of previously required editing steps reduced.

Study Design
As motivated by Morris et al. [25], we used partners, pro-
duction, and priming for elicitation. Our lab-based study was
conducted in pairs and each pair were asked to produce at
least three different interaction proposals per pattern to make
sure that they considered a wide range of possibilities. Partic-
ipants were primed with a mobile multi-device “on-the-go”
scenario to set the context and had full control over devices,
using them freely to demonstrate interactions, but an in-the-
wild study may still lead to different proposals. Participants
were also primed with a video showing the envisioned semi-
automatic support for cross-device interfaces, however, with-
out showing any user interactions that might trigger a pattern.

The typical protocol for elicitation studies shows the effect of
an interaction to participants, e.g., using a video, and prompts
them for the cause for a number of referents [39]. We adapted
this study design as follows. Based on an example single-
device design, we showed the effect in the form of a popular
cross-device version of the design after applying a given pat-
tern from [26], and then asked participants to demonstrate
interactions that could trigger that effect and explain what
should happen—independent of any technical considerations.

To create and switch between single-device and cross-device
designs, the study facilitator loaded each interface into XD-
Browser. In a Wizard of Oz-style similar to [24], it was also

the facilitator who used XDBrowser’s tools to re-author de-
signs for a given pattern. This is in contrast to [26] where
participants were given access to all features of XDBrowser
and asked to customize the interfaces themselves.

A post-study questionnaire collected participants’ ratings of
the three studied settings using XDBrowser, comments on
the benefits and limitations of using XDBrowser, and demo-
graphics. The study took slightly more than one hour per
study pair, and participants were compensated $20 USD each.

Elicitation Tasks
We aimed to cover a broad range of common web browsing
tasks: (a) information browsing tasks (with little to no text
input), e.g., when playing videos or browsing maps, (b) in-
formation input tasks, e.g., when composing a new mail, and
(c) information gathering tasks as combinations of browsing
and input tasks, e.g., when responding to messages in a mail
interface and checking availability or setting up appointments
in a calendar interface. Our elicitation study was composed
of 18 tasks: six referents × three conditions (Figure 7).

As referents, we chose the most popular designs for the
overview+detail, view+input, remote-control, split, and ex-
tend cross-device patterns from [26]. We added a new ref-
erent (R3) prompting participants to switch patterns between
the overview+detail and view+input patterns. The need to
switch between different interface distributions depending on
the task was frequently raised by participants but only possi-
ble using multiple tabs. The referent for the split pattern (R5)
was included to probe how participants would want to con-
trol synchronization, a question of particular concern to the
earlier study. The last referent (R6) is a version of the extend
pattern that replicates a tab viewing the calendar on the sec-
ond device. This is a cross-apps task frequently mentioned by
participants but not part of the earlier study [26].

We considered mobile settings as ones in which users
might especially benefit from combining multiple devices
for more screen real estate and larger input surfaces. We
prepared three settings involving different types of mobile
devices—phone+tablet as in [26], watch+phone, and watch+
phone+tablet. The two new settings compared to [26] al-
lowed us to study how users might want to adapt and refine
the patterns when using different and more than two devices.

Raedle et al. [30] presented an elicitation study that included
move, copy, expand, and duplicate (both fully and partially)
referents for phone and tablet settings. Their study therefore
provided a good basis for comparison. However, we required
additional referents, namely to switch between cross-device
versions of the same interface (R3) and switch between dif-
ferent interfaces (R6), and control synchronization (R5).

Participants’ Backgrounds and Experience
The study targeted end-users. We recruited 16 HCI bach-
elor and master students (8 male, 8 female, median age of
24 years) with rich diversity in backgrounds and experience
(UX design, architecture, media, project management). Each
passed a short selection interview making sure that they have
experience with mobile touch devices (median 5 out of 5) and



Figure 7. R1-6 show the cross-device interface referents and S1-3 the multi-device settings that formed the 18 elicitation tasks in the study.

interface design (median 3.5 out of 5). All expressed strong
familiarity with the sample interfaces, using their mobile de-
vices for mail, media, and maps-related tasks on a daily basis.

Proposed Cross-Device Interactions

Pattern Most Popular Interactions
Overview+Detail (R1) Drag detail element
View+Input (R2) Swipe / double touch form input element
Switch (R3) Swipe
Remote-Control (R4) Drag / double touch control element
Split (R5) Long press to trigger action only locally
Extend (R6) Long press drag element or page to be copied

Table 1. Cross-device patterns and most popular interaction proposals

Overall, participants proposed 161 interactions after going
through all six tasks for each of the three multi-device set-
tings so that all three settings could be supported with their
defined interaction sets. Table 1 shows a mapping of pat-
terns to participants’ most popular interaction proposals. See
https://github.com/mi2lab/xdbrowser2 for the complete
range of interactions and details of our following analysis.

Participants’ Design Goals
Participants aimed to define interaction sets that we charac-
terize as simple, consistent, and conflict-free. By simple, we
mean that interactions could be executed in a single step to
keep required user input minimal. By consistent, we mean
that users would not have to learn and memorize a large va-
riety of gestures and that similar gestures had a similar ef-
fect (as in trigger a closely related cross-device pattern). By

conflict-free, we mean that each new interaction had a differ-
ent effect and that it did not conflict with existing interactions
on the three types of devices used in the study.

Popular Types of Interactions
For the following analysis of participants’ interaction propos-
als, we referred to Material Design Gesture Patterns1 to an-
alyze the touch mechanics (what fingers did on the screen)
and touch activities (results of specific gestures), in addition
to the research literature on device motion gestures [31] and
multi-device gestures [7, 8, 15, 18, 30, 33, 35]. We computed
a variant of the max-consensus and consensus-distinct ratio
proposed by Morris [24] to identify the overall most popu-
lar interaction proposals across the three multi-device settings
for a given referent (using a consensus threshold of two).

The predominant interactions for the first four referents were
swipe (gross gesture, faster, typically has no on-screen tar-
get) and drag (fine gesture, slower, more controlled, typically
has an on-screen target). For example, participants preferred
swipe (with no particular on-screen target) for view+input
(R2) and switching between overview+detail and view+input
(R3), and drag (with detail and control element as target) for
overview+detail (R1) and remote-control (R4).

This was not too surprising since all of these tasks involved
moving page elements between devices and other studies
found similar interaction preferences [30]. However, a sec-
ond high-ranking proposal was to just touch or double touch
1https://material.google.com/patterns/gestures.html

https://github.com/mi2lab/xdbrowser2


the corresponding node. Similar to our own intuition, partici-
pants’ common expectation with most proposals was that the
browser would somehow determine the desired pattern, just
from the type of element involved in the interaction, and then
zoom the respective node and activate the pattern.

For the split (R5) referent, participants favored long press to
trigger an action only on the current device without synchro-
nization on other devices. For extend (R6), they frequently
proposed long press drag to copy and sync the target ele-
ment, or the entire page if no target was selected. With ex-
tend, participants also envisioned that a drag image would be
generated from the selected element which they would drag
in the direction of the target device and release at the edge of
the screen. As an alternative spatially-agnostic interaction, an
overlay with icons for all connected devices could be shown
on the screen. As the element is dropped on a particular de-
vice’s icon, only that element would be shown on that device.

Changing Interactions to Fit Device Combinations
Initially, participants proposed a total of 140 interactions
for the phone+tablet setting. We recorded 21 changes to
the interaction sets as the device settings changed—10 for
watch+phone and 11 for watch+phone+tablet. We classified
three types of changes. First, participants needed to discern
the target device of an interaction in the three-device setting,
e.g., when moving a page element to one of the other devices.
Second, a new setting prompted them to switch the preferred
interaction. Third, in two cases, participants proposed a new
interaction. The reason for making such changes was con-
flicting swipe interactions to move elements between devices
with bringing up another screen on the watch.

Leaning towards Spatially-Agnostic Interactions
Initially, we could also observe the tendency to prefer
spatially-aware interactions similar to Raedle et al. [30].
However, as the watch was introduced in the second setting,
and in particular when all three devices were used in the third,
participants increasingly felt that using devices freely and po-
sitioning them for spatial interactions actually made it harder
to select a target device, especially when target devices were
aligned in the same line. In fact, they frequently tried several
spatial interactions before they resorted to spatially-agnostic
menus, buttons, and dropdowns as their preferred techniques.

Adapting Patterns to Different Devices
When switching to the watch+phone setting, participants ar-
gued that the patterns quite naturally translated to the smaller
set of devices. Participants just shifted the role of the phone
to the watch, and the role of the tablet to the phone. However,
for 5 tasks in this setting, participants said that even though
the proposed interactions would still hold, they would proba-
bly not use the watch and disable the cross-device interface,
i.e., switch to the single pattern on the phone.

Expanding Patterns to More Than Two Devices
When re-introducing the tablet in the third setting, partici-
pants typically reassigned the tablet its original role. There
was then the overall preference to duplicate the phone’s inter-
face on the watch. The exception was one pair of participants

who argued that they would not extend the mail/ calendar in-
terface (R6) to the watch since having it distributed between
the phone and tablet was already sufficient.

Participants’ Feedback
In the post-study questionnaire, participants rated enjoyment,
ease of use, and effectiveness when operating the browser in
all three settings (using a 7-point Likert scale). The first set-
ting, phone+tablet, fared by far the best with averages around
5.5 for all three ratings. When switching to watch+phone, the
ratings were consistently lower around 3.5. Finally, there was
a consistent average rating of 3.9 for watch+phone+tablet.

This is an interesting finding since it is often considered
a limitation to just have two devices in cross-device stud-
ies [26]. The common assumption among cross-device re-
searchers seems to be that using more than two devices might
be beneficial [15]. We observed the inverse effect, but the
results might look again different with other types of devices.

STUDY 2: USER-DEFINED PAGE SEGMENTATIONS
Web page segmentation is the process of splitting page con-
tent into smaller blocks of elements. These elements can then
be extracted as a group. Common techniques are based on
analyses of HTML DOM nodes’ content, structure, and hi-
erarchy [6, 9, 16, 34]. We needed such a technique for our
new browser to select and distribute page elements relevant to
each pattern, but from the XDBrowser studies so far, we did
not have the required information since participants selected
elements visually in the rendered page, without looking at the
underlying nodes [26]. Another limitation of the earlier study
is that it was based on only five pages inspired from GMail,
YouTube, Google Maps, Wikipedia, and Flickr. We wanted
to see how the patterns could be applied to a larger corpus.

Study Design
Our second study was divided into two parts. The goal of the
first part was to develop heuristics for automatic page seg-
mentation. We produced a dataset of 41 web pages manually
segmented and labeled for the same five cross-device patterns
as in the previous study. The goal of the second part was to
develop a segmentation method based on content analyses of
the labeled pages. We then performed tests to check whether
our new method is able to match the manually created labels.

We started with compiling a list of 50 Alexa Top 500 Global
Sites. By selecting the top five sites from ten different Alexa
categories (Arts, Business, Games, Health, Home, News, Sci-
ence, Shopping, Society and Sports), we wanted to cover a
broad range of web site genres. We then hired three students
for the labeling tasks. The students first worked together to
select and download one representative content page for each
site—e.g., an article page on news sites such as CNN. Nine
pages that required an account to access content (e.g., on
banking sites) were skipped, giving us a sample of 41 pages.

In the next steps, each student individually labeled the ele-
ments corresponding to each pattern. To do this, they used the
Chrome developer tools to inspect each page, visually select
the element in the rendered page, and copied the CSS selector
of the respective HTML DOM nodes into a spreadsheet.



In the last step, the students met and used a shared display
to review their node selections on a pattern-by-pattern basis
for each page. They determined which nodes were the same
or similar visually, which selections were different CSS se-
lectors but still targeted the same visual elements, and which
were actually different, and marked those using color coding.

Each student took on average 10 hours from start to finish
for the labeling tasks, and about 2.5 hours to compare and
analyze the differences. The pay rate was $15 USD per hour.

Dataset
Applying the five cross-device patterns to all 41 pages in the
sample, the students produced a joint total of 981 labels. See
https://github.com/mi2lab/xdbrowser2 for the complete
dataset and the spreadsheet with labels and our analysis.

Agreement Scores
We computed initial agreement scores between the three stu-
dents by building the proportion of similarly labeled nodes to
all nodes they individually selected for each pattern.

• The highest agreement was achieved for the view+input
pattern (85%). The students stated that the input controls
were easy to visually identify and select in each page.

• Agreement scores were still relatively high for extend
(73%) and split (68%). While the students typically identi-
fied the same elements, they selected different child nodes.

• Agreement scores were lower for remote-control (49%).
The students found competing candidates for the control
(e.g., top menus and sidebars) and had different prefer-
ences for the remote (whole page vs. just target elements).

• Finally, there was very little agreement for overview+detail
(4%) due to a much higher number of candidates given
that many pages contained multiple alternative detail nodes
(e.g., video description in text vs. actual video).

Content Analyses
In the next steps, we performed content analyses to iden-
tify the reasons for varying agreement between the students.
We found that the existence of multiple page elements with
similar functions and hence scoping was the main reason for
the mixed agreement scores. Even though students selected
different nodes when considering the whole page, they in
fact identified different “local” elements with similar “global”
functions, meaning that the criteria they applied matched.

• The closest matching DOM selections were indeed found
for input elements, which either wrapped or were input el-
ements themselves.

• The control nodes were commonly characterized by wrap-
ping links, buttons, or drop-down lists.

• The remaining selections only had in common that they
were container nodes for multiple block-level elements.

• Approximately 89% of selected nodes had an id attribute.

Preliminary Page Segmentation Method
Based on these insights, we developed a preliminary segmen-
tation method. When the user invokes an element in the page,
we get the DOM path to the node that caught the event. Start-
ing from this node and, by traversing the DOM hierarchy up-
wards, subsequently visiting all parent nodes until we reach
BODY, we find the closest node that can be classified as:

• control, if the node has an id and wraps A nodes,
or nodes with onclick handler, BUTTON or
INPUT[type="button"], or SELECT nodes;

• input, if the node has an id and wraps INPUT or
TEXTAREA nodes, or is one itself;

• other, if the node is neither control nor input, has an id,
and contains DIV, P, UL, or TABLE nodes.

We acknowledge that this is a first simple segmentation
method that was derived from our analyses of 41 pages.
While we believe it to be generic, it is hard to find a “good”
training set that represents most existing web pages. Never-
theless, our initial tests showed that these three classes and re-
spective node types can achieve good results on many pages.

XDBROWSER 2.0 PROTOTYPE
Based on the results of our two studies, our new prototype
(Figure 8) adapted XDBrowser [26] as described below.

Semi-Automatic Segmentation and Pattern Activation
First, we need to emphasize that our technique is robust in that
it does not break web pages–we only zoom target elements
on one device and hide them on the other. For edge cases
that activate a different pattern than the one desired by the
user, the cost is not higher than zooming the wrong element
in common mobile browsers. The user can easily restore the
unzoomed view. As in current browsers, they could first use
the browser’s default zoom for more precise node selections,
and then our method can be used to trigger the pattern.

Our new prototype uses the duplicate pattern as the default
(Figure 8(a)). When connecting a new device, it copies open
pages and synchronizes their view state and input. From this
pattern, all other patterns are triggered as described below.

When swipe, drag, or double touch is invoked on an element,
we perform the classification above and proceed as follows:

• If a node of class control is found, the remote-control pat-
tern will become active. The control node will be zoomed
on the current device. On connected devices, the control
will be hidden and remaining nodes zoomed (Figure 8(b)).

• If a node of class input is found, view+input will become
active with only the input node visible and zoomed on the
current device, while being hidden on connected devices.

• If a node of class other is found, overview+detail will be-
come active and the node zoomed on the current device.

• If no such node is found before BODY, the duplicate pattern
will become active and the unzoomed view restored.

https://github.com/mi2lab/xdbrowser2


(a) Duplicate as the default (b) Remote-control pattern after invoking the inbox element

Figure 8. XDBrowser 2.0 prototype with default duplicate pattern and after activating the remote-control pattern on the mail interface from Figure 1

When long press is invoked on an element, we activate split
and perform the action without synchronization with other
devices. When long press is followed by drag, we find the
closest control, input, or other node. If there is such a node
before we reach BODY, the extend pattern will become active
and, on the target device, all nodes will be hidden except for
that node. If no such node can be found, instead the duplicate
pattern becomes active and all nodes will be shown. When
overriding the active pattern with extend or duplicate, sync
will be enabled on that device. This allows users to reinte-
grate a second device without having to switch devices.

Architecture and Implementation

Figure 9. Main components of our prototype’s Node.js-based client-
server architecture with WebSockets multi-device communication

Our new prototype is a hybrid of a standalone web applica-
tion and a Chrome extension, making it possible to run on
both desktop and Android mobile devices, including tablets,
phones and watches, where Chrome extensions are currently
not supported. On tablets and smartphones, any browser can
function as the host browser for our prototype application. On
smartwatches, the Wear Internet Browser app is required.

The architecture is shown in Figure 9. The prototype connects
and jointly operates multiple browser windows split over con-
nected devices. The implementation is divided into client-
side background and content scripts and a Node.js2 server us-
ing Socket.IO3 for WebSockets communication.
2http://nodejs.org/
3http://socket.io

The background script is executed once per browser window
and runs in the background. It is used to activate patterns and
maintain a WebSocket connection between multiple browser
windows through the server. It is implemented in JavaScript
using Chrome’s APIs to define the page and browser actions
and listen to messages from content scripts.

The content script is executed for every page loaded into a
tab. It is used to inject our DOM segmentation and view state
synchronization methods. It is implemented using jQuery for
DOM manipulation, hammer.js4 for handling touch events,
and zoom.js5 for zooming page elements.

Technical Evaluation
We conducted a technical evaluation of our new prototype
in two parts: (1) testing the page segmentation method and
(2) testing the prototype on multiple devices and popular web
sites. An end-to-end user study is planned for the future.

Testing the Semi-Automatic Approach
We tested the new prototype on pages in our sample, attempt-
ing to match nodes selections with semi-automatic segmenta-
tion that students had manually labeled and agreed on for the
five cross-device patterns. For scoping, we started the method
by invoking the rendered element that students had visually
selected, which does not guarantee a match. There are many
variables such as how and where the user invoked the el-
ement, DOM hierarchy, and CSS positioning. Conversely,
even non-exact matches can have similar visual results be-
cause of how nodes are often nested to compose elements.

In our tests, we were able to classify and match input ele-
ments with high accuracy, and trigger the view+input pattern
as intended. We achieved similarly high accuracy for remote-
control, but, because of the way the remaining elements were
constructed on some pages, it did not always achieve the in-
tended zoomed view on the remote device. For split, extend,
and overview+detail, we were able to match the exact nodes
about 50% of the time, as the method often selected a child
node “closer” to the node that was actually invoked. How-
ever, on the majority of pages, we were still able to achieve
the intended zoomed view because of similar visual attributes.

4http://hammerjs.github.io
5http://github.com/hakimel/zoom.js



Testing on Multiple Devices and Popular Sites
The second part of our evaluation is a report on the author’s
experience using the prototype to browse popular web sites in
a number of multi-device settings. Although we successfully
deployed the prototype on many Android tablets, phones, and
smartwatches, we experienced a couple of limitations of the
current implementation. The following should give an indi-
cation to readers, while more systematic tests are planned.

First, we noticed performance issues with zooming that some-
times impacted UI responsiveness. Generally, double touch to
zoom worked best in the larger device settings and when used
to offload content from, or redirect input to, a smaller device.

The view+input pattern is a good example of this. The larger
device can be transformed into a keyboard for entering data
on the smaller device. This was very useful for longer text
entry such as when writing mails in the phone+tablet setting.
However, it was also very helpful for searching on many sites.
In the watch+phone setting, this was the most feasible way of
entering search terms on the watch. Using the phone rather
than the watch for input also seemed like a good option when
speech input is not suitable in the current situation. It was
even useful in a larger device setting, where using one device
for input only helped to quickly refine searches while viewing
results on the other device.

The overview+detail pattern proved problematic in the
watch+phone setting when the watch was used as the detail
view, in particular, for graphic-heavy content such as images
and videos. Here, our own double touch to zoom technique
showed a much poorer performance than default browser be-
havior using pinch to zoom. The problem had mostly to do
with execution performance of JavaScript and CSS transfor-
mations which were very demanding on the watch. However,
even standard zoom was often “lagging” when panning and
rescaling the view. On the other hand, the pattern can be used
for its own benefit by zooming into different areas of the page
on the watch and viewing details on the other devices.

Finally, the remote-control pattern was an exception to our
observations above. Here, the phone lent itself well to con-
trolling the tablet and the watch for controlling the phone. In
the phone+tablet setting, this seemed most useful for reading
mails as in previous examples used throughout the paper and
for remote playback of videos from YouTube and for control-
ling Flickr slideshows. In the watch+phone setting on Flickr,
either device could be used to view image slideshows as they
were automatically scaled to the browser viewport, but con-
trolling them from the watch would avoid screen occlusions
on the phone. While remote-control was generally also a pos-
sibility for Google Maps, here it seemed more natural not to
redirect input to another device, but to control it directly to
pan and zoom the map. There was the minor issue that the
map zoom level changed when double touch to zoom was in-
voked on the map to activate the remote-control pattern.

RELATED WORK AND DISCUSSION
Below we discuss related work on adaptive web browsing
systems and cross-device interfaces and interactions. We also
discuss significance and generalizability of our new studies.

Adaptive Web Browsing Systems
A first line of research investigated novel web browsing sys-
tems providing interactive tools to address emerging device
characteristics. For example, PowerBrowser [6] summarized
page text and produced section outlines, while reducing white
space and image quality. WEST [5] supported a combination
of text reduction and focus+context visualization to provide
an overview of pages that are too large to be viewed in full.
WebThumb [38] allowed users to perform various operations
on selected page elements, for example, picking up, zooming,
and panning. All of them share the goal of making single-
device interfaces on small-screen devices more accessible for
web browsing. While Johanson et al. [19] created a first
multi-device web browser, it was only with XDBrowser [26]
that users were enabled to customize existing web pages for
multi-device use using visual web page authoring tools.

Similar to XDBrowser [26], Highlight [28] and PageTailor [4]
enabled end-users to customize pages for mobile devices.
As an alternative, Collapse-to-Zoom [2], ThumbSpace and
Shift [21, 37] developed new interaction methods for users to
interactively zoom page content on small screens. Finally, op-
paccess [3] iteratively magnifies web pages as long as it does
not lead to horizontal scrolling and overlapping text. Our
new prototype adds to this line of research, and introduces
automation support for distributing web pages on demand.

Rather than providing user-driven tools, a second line of re-
search developed more automatic page transformation tech-
niques. Again with the goal of fitting content into smaller
screens, existing techniques rely on page summarization [5,
6], page splitting [9, 16], or fish-eye and thumbnail views [1,
23]. Advanced layout generation approaches required to cater
to a much wider range of display contexts were investigated
by Gajos et al. [13] and Schrier et al. [34]. As well as being
limited to single-device use, both were originally designed for
desktop user interfaces and are not easily ported to the web.
Our segmentation method based on cross-device design pat-
terns makes it possible to automate page distribution between
multiple devices, and forms a contribution in this space.

Cross-Device Interfaces and Interactions
Our work also adds to a growing body of knowledge on pro-
viding better support for cross-device interactions. Here, we
can identify at least two relevant streams of research.

The first stream of research has investigated new cross-device
design tools [12, 14, 15, 18, 27, 40]. The vast majority
of these tools, however, are targeted at developers, allow-
ing them to distribute interfaces between devices program-
matically or using special authoring tools. While a number
of possible cross-device interfaces were showcased to illus-
trate technical support, whether or not these address actual
user needs and are desirable by end-users was only recently
explored with XDBrowser [26]. Our new prototype adds to
the growing list of tools for cross-device design. The semi-
automatic approach we have developed based on a first set of
cross-device patterns is a promising new direction that could
potentially help transform the large variety of existing single-
device interfaces without the need for major modifications.



The second stream is comprised of end-user elicitation. To
probe possible designs without technological constraints [39],
elicitation studies have proven to be useful to generate
user-defined interaction sets, e.g., for multi-display environ-
ments [35], for connecting phones and large displays [33],
and for interacting with multiple phones and tablets [30]. In
particular, the study by Raedle et al. [30] on spatially-aware
vs. spatially-agnostic interactions is closely related. While we
could observe similar trends, it was interesting to see how par-
ticipants changed their interaction proposals from spatially-
aware to increasingly agnostic techniques, as we changed
both the types and the number of devices during elicitation.

Significance and Generalizability
In sum, cross-device research has independently produced
elicitation studies and systems. Raedle et al. [30], Nebeling
and Dey [26], and our paper generate research value by incor-
porating both aspects. The two studies we present fill the gap
between user-driven cross-device elicitation as in [30] and
developer-driven automatic solutions such as Panelrama [40].

There were two significant aspects to our studies that go be-
yond what was found by Hamilton and Wigdor [15], Raedle
et al. [30], and Nebeling and Dey [26].

First, our design involved three devices and probed how inter-
actions need to be adapted for different device combinations
to make them work across all three device settings.

Second, our work helped identify the need for, and issues as-
sociated with, semi-automatic generation of cross-device in-
terfaces. We developed first support based on the patterns
from [26], paired with interaction proposals from Study 1.
From Study 2, we developed an understanding of which pat-
terns can be better automated than others, and why. Our anal-
ysis at a per-pattern level helps direct future research.

CONCLUSION
Existing cross-device design solutions impose significant ef-
fort on users and/or developers and require interfaces to be
manually redesigned—either through visual authoring or in
code [10, 12, 14, 17, 18, 27, 40]. Building on user-defined
cross-device patterns from [26], this paper contributes two
studies that inform the design of more automatic support for
obtaining cross-device designs of existing interfaces. Specif-
ically, we introduced a simple set of user-defined interactions
to trigger cross-device designs and a pattern-based page seg-
mentation method for semi-automatically distributing page
content between multiple devices. Our new techniques strive
to minimize the need for user and developer intervention. We
discussed insights from cross-device studies that incorporate
settings with more than two devices, including smartwatches
and how they fit in. Implicitly, the paper also showed how to
use our results, here to derive interactions and semi-automatic
distribution to build a new version of XDBrowser [26].

Acknowledgments
Thanks to the Swiss National Science Foundation for
partially supporting this research under mobility grants,
P300P2 154571 and P300P2 164646. Special thanks to
Andie Dumas, Annabel Weiner, and Licheng Zhu for assist-
ing with this research, anonymous students for participating
in the studies, and Anind Dey for comments on earlier drafts.

REFERENCES
1. Patrick Baudisch, Bongshin Lee, and Libby Hanna.

2004a. Fishnet, a fisheye web browser with search term
popouts: a comparative evaluation with overview and
linear view. In Proc. AVI.

2. Patrick Baudisch, Xing Xie, Chong Wang, and
Wei-Ying Ma. 2004b. Collapse-to-Zoom: Viewing Web
Pages on Small Screen Devices by Interactively
Removing Irrelevant Content. In Proc. UIST.

3. Jeffrey P. Bigham. 2014. Making the Web Easier to See
with Opportunistic Accessibility Improvement. In
Proc. UIST.

4. Nilton Bila, Troy Ronda, Iqbal Mohomed, Khai N.
Truong, and Eyal de Lara. 2007. PageTailor: Reusable
End-User Customization for the Mobile Web. In
Proc. MobiSys.

5. Staffan Björk, Lars Erik Holmquist, Johan Redström,
Ivan Bretan, Rolf Danielsson, Jussi Karlgren, and
Kristofer Franzén. 1999. WEST: A Web Browser for
Small Terminals. In Proc. UIST.

6. Orkut Buyukkokten, Hector Garcia-Molina, Andreas
Paepcke, and Terry Winograd. 2000. Power Browser:
Efficient Web Browsing for PDAs. In Proc. CHI.

7. Nicholas Chen, François Guimbretière, Morgan Dixon,
Cassandra Lewis, and Maneesh Agrawala. 2008.
Navigation Techniques for Dual-Display E-Book
Readers. In Proc. CHI.

8. Xiang ’Anthony’ Chen, Tovi Grossman, Daniel J.
Wigdor, and George W. Fitzmaurice. 2014. Duet:
Exploring Joint Interactions on a Smart Phone and a
Smart Watch. In Proc. CHI.

9. Y. Chen, W.Y. Ma, and H.J. Zhang. 2003. Detecting
Web Page Structure for Adaptive Viewing on Small
Form Factor Devices. In Proc. WWW.

10. Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave:
Scripting Cross-Device Wearable Interaction. In
Proc. CHI.

11. David Dearman and Jeffrey S. Pierce. 2008. ”Its on my
other Computer!”: Computing with Multiple Devices. In
Proc. CHI.

12. Luca Frosini and Fabio Paternò. 2014. User Interface
Distribution in Multi-Device and Multi-User
Environments with Dynamically Migrating Engines. In
Proc. EICS.

13. Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S.
Weld. 2007. Automatically Generating User Interfaces
Adapted to Users’ Motor And Vision Capabilities. In
Proc. UIST.

14. Giuseppe Ghiani, Fabio Paternò, and Carmen Santoro.
2012. Push and Pull of Web User Interfaces in
Multi-Device Environments. In Proc. AVI.



15. Peter Hamilton and Daniel J. Wigdor. 2014. Conductor:
Enabling and Understanding Cross-Device Interaction.
In Proc. CHI.

16. G. Hattori, K. Hoashi, K. Matsumoto, and F. Sugaya.
2007. Robust Web Page Segmentation for Mobile
Terminal Using Content-Distances and Page Layout
Information. In Proc. WWW.

17. Tommi Heikkinen, Jorge Goncalves, Vassilis Kostakos,
Ivan Elhart, and Timo Ojala. 2014. Tandem Browsing
Toolkit: Distributed Multi-Display Interfaces with Web
Technologies. In Proc. PerDis.

18. Steven Houben and Nicolai Marquardt. 2015.
WatchConnect: A Toolkit for Prototyping
Smartwatch-Centric Cross-Device Applications. In
Proc. CHI.

19. Brad Johanson, Shankar Ponnekanti, Caesar Sengupta,
and Armando Fox. 2001. Multibrowsing: Moving Web
Content across Multiple Displays. In Proc. Ubicomp.

20. Shaun K. Kane, Amy K. Karlson, Brian Meyers, Paul
Johns, Andy Jacobs, and Greg Smith. 2009. Exploring
Cross-Device Web Use on PCs and Mobile Devices. In
Proc. INTERACT.

21. Amy K. Karlson and Benjamin B. Bederson. 2008.
One-handed touchscreen input for legacy applications.
In Proc. CHI.

22. Amy K. Karlson, Shamsi T. Iqbal, Brian Meyers,
Gonzalo Ramos, Kathy Lee, and John C. Tang. 2010.
Mobile Taskflow in Context: A Screenshot Study of
Smartphone Usage. In Proc. CHI.

23. Heidi Lam and Patrick Baudisch. 2005. Summary
Thumbnails: Readable Overviews for Small Screen Web
Browsers. In Proc. CHI.

24. Meredith Ringel Morris. 2012. Web on the Wall:
Insights from a Multimodal Interaction Elicitation
Study. In Proc. ITS.

25. Meredith Ringel Morris, Andreea Danielescu, Steven M.
Drucker, Danyel Fisher, Bongshin Lee, m. c. schraefel,
and Jacob O. Wobbrock. 2014. Reducing Legacy Bias in
Gesture Elicitation Studies. Interactions 21, 3 (2014).

26. Michael Nebeling and Anind K. Dey. 2016.
XDBrowser: User-Defined Cross-Device Web Page
Designs. In Proc. CHI.

27. Michael Nebeling, Theano Mintsi, Maria Husmann, and
Moira C. Norrie. 2014. Interactive Development of
Cross-Device User Interfaces. In Proc. CHI.

28. Jeffrey Nichols, Zhigang Hua, and John Barton. 2008.
Highlight: A System for Creating and Deploying Mobile
Web Applications. In Proc. UIST.

29. Antti Oulasvirta and Lauri Sumari. 2007. Mobile Kits
and Laptop Trays: Managing Multiple Devices in
Mobile Information Work. In Proc. CHI.

30. Roman Rädle, Hans-Christian Jetter, Mario Schreiner,
Zhihao Lu, Harald Reiterer, and Yvonne Rogers. 2015.
Spatially-aware or Spatially-agnostic?: Elicitation and
Evaluation of User-Defined Cross-Device Interactions.
In Proc. CHI.

31. Jaime Ruiz, Yang Li, and Edward Lank. 2011.
User-Defined Motion Gestures for Mobile Interaction.
In Proc. CHI.

32. Stephanie Santosa and Daniel Wigdor. 2013. A Field
Study of Multi-Device Workflows in Distributed
Workspaces. In Proc. UbiComp.

33. Dominik Schmidt, Julian Seifert, Enrico Rukzio, and
Hans Gellersen. 2012. A Cross-Device Interaction Style
for Mobiles and Surfaces. In Proc. DIS.

34. Evan Schrier, Mira Dontcheva, Charles E. Jacobs,
Geraldine Wade, and David Salesin. 2008. Adaptive
Layout for Dynamically Aggregated Documents. In
Proc. IUI.

35. Teddy Seyed, Chris Burns, Mario Costa Sousa, Frank
Maurer, and Anthony Tang. 2012. Eliciting Usable
Gestures for Multi-Display Environments. In Proc. ITS.

36. Desney S. Tan, Brian Meyers, and Mary Czerwinski.
2004. WinCuts: Manipulating Arbitrary Window
Regions for More Effective Use of Screen Space. In
Proc. CHI EA.

37. Daniel Vogel and Patrick Baudisch. 2007. Shift: A
Technique for Operating Pen-Based Interfaces Using
Touch. In Proc. CHI.

38. Jacob O. Wobbrock, Jodi Forlizzi, Scott E. Hudson, and
Brad A. Myers. 2002. WebThumb: Interaction
Techniques for Small-Screen Browsers. In Proc. UIST.

39. Jacob O. Wobbrock, Meredith Ringel Morris, and
Andrew D. Wilson. 2009. User-Defined Gestures for
Surface Computing. In Proc. CHI.

40. Jishuo Yang and Daniel Wigdor. 2014. Panelrama:
Enabling Easy Specification of Cross-Device Web
Applications. In Proc. CHI.


	Introduction
	XDBrowser + Patterns of Cross-Device Web Use
	1. Copy and Sync Patterns: Duplicate/Extend
	2. Move and Sync Patterns: Remote-Control/View+Input
	3. Async Patterns: Overview+Detail/Split/Single

	Intuition behind semi-automatic approach
	Study 1: User-Defined Interactions
	Study Design
	Elicitation Tasks
	Participants' Backgrounds and Experience
	Proposed Cross-Device Interactions
	Participants' Design Goals
	Popular Types of Interactions
	Changing Interactions to Fit Device Combinations
	Leaning towards Spatially-Agnostic Interactions
	Adapting Patterns to Different Devices
	Expanding Patterns to More Than Two Devices

	Participants' Feedback

	Study 2: User-Defined Page Segmentations
	Study Design
	Dataset
	Agreement Scores
	Content Analyses

	Preliminary Page Segmentation Method

	XDBrowser 2.0 Prototype
	Semi-Automatic Segmentation and Pattern Activation
	Architecture and Implementation
	Technical Evaluation
	Testing the Semi-Automatic Approach
	Testing on Multiple Devices and Popular Sites


	Related Work and Discussion
	Adaptive Web Browsing Systems
	Cross-Device Interfaces and Interactions
	Significance and Generalizability

	Conclusion
	REFERENCES 

