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Figure 1. GestureWiz provides a rapid prototyping environment for gesture-based interfaces via a record–recognize–run pattern: record 2D/3D gestures
using a video-based record–replay tool to form mouse, multi-touch, multi-device, and full-body gesture sets (left), use Wizard of Oz optionally powered
by crowds to recognize gestures from a given set (middle), and run the resulting human-powered recognizer in user interface prototypes (right).

ABSTRACT
Designers and researchers often rely on simple gesture rec-
ognizers like Wobbrock et al.’s $1 for rapid user interface
prototypes. However, most existing recognizers are limited
to a particular input modality and/or pre-trained set of ges-
tures, and cannot be easily combined with other recognizers.
In particular, creating prototypes that employ advanced touch
and mid-air gestures still requires significant technical expe-
rience and programming skill. Inspired by $1’s easy, cheap,
and flexible design, we present the GestureWiz prototyping
environment that provides designers with an integrated solu-
tion for gesture definition, conflict checking, and real-time
recognition by employing human recognizers in a Wizard of
Oz manner. We present a series of experiments with design-
ers and crowds to show that GestureWiz can perform with
reasonable accuracy and latency. We demonstrate advantages
of GestureWiz when recreating gesture-based interfaces from
the literature and conducting a study with 12 interaction de-
signers that prototyped a multimodal interface with support
for a wide range of novel gestures in about 45 minutes.
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INTRODUCTION
With the proliferation of many new types of devices and input
sensors, such as AR-capable phones and HoloLens, design-
ers face an increased need to support novel forms of touch
and gesture-based interaction. While there is an increasing
range of gesture recognition tools for developers [17, 29, 30],
support for designers is still limited [33]. First, recognizers
are constrained by what is feasible with current technology
and not necessarily determined by what is desired by users
[32]. Second, during design, gestures typically vary both in
fidelity and modality, and gesture sets can quickly grow in
complexity and raise potential for ambiguity. In many cases,
this poses very different technical requirements. For exam-
ple, if the designer wants to support finger instead of full-
body gestures, this also requires different sensing hardware
and different models and algorithms at the system level [25].

There is an important research trend to obtain gesture sets
from users, rather than designers, through elicitation stud-
ies [32]. In these studies, system designers prompt the end-
users to demonstrate gestures they would like to use to ex-
ecute a given system command, and user agreement deter-
mines the most popular gestures that make up the set [22,
32]. Apart from less constrained and less biased designs [21,
32], researchers have argued for other advantages to this par-
ticipatory design approach in terms of memorability [23] and
personalization [26]. While there are many advantages for the
design, there are also new challenges for the implementation.

Most studies end with elicitation and do not consider imple-
mentation in actual recognizers. This raises two issues. First,
significant development effort can be required to mitigate am-
biguity and conflicts in user-defined gesture sets. For exam-
ple, a gesture set elicited for a living-room TV web-browsing
scenario [20] required significant refinement and, in some
cases, substitution with alternative gestures to provide sup-
port in an actual Kinect-based system [25]. Second, multiple
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input sensors may be required for the implementation. For ex-
ample, a recent study with 20 participants produced a set of
the 44 most frequently suggested interactions for 40 common
interaction tasks in AR interfaces [28]. Providing an imple-
mentation for this gesture set would require both finger and
hand gesture recognition as well as virtual and physical object
tracking. User interface prototypes using this gesture set can-
not be done without extensive engineering, and may not even
be feasible with existing toolkits and gesture recognizers.

We present GestureWiz, a gesture-based interface prototyping
environment that provides a) means to rapidly record multi-
modal gestures, e.g., multitouch, Kinect, Leap Motion, and
mid-air 3D gestures; b) a human-powered gesture recognizer
that works without system implementation and instead uses a
Wizard of Oz (WOZ) or crowdsourcing approach; and c) an
integrated crowd-powered gesture ambiguity checker. A par-
ticular strength of our system is the flexibility to use different
types of human recognizers. We support using a local Wizard
or online crowds if the recognition workload would be too
large for a single human. For example, AR research has pre-
viously experimented with WOZ approaches [6, 7, 19], but
found the six degrees of freedom too difficult to handle.

In contrast to much of the existing crowdsourcing work, our
goal is not to establish that crowds can also do gesture recog-
nition. Rather, we focus on designers and want to study in
which ways they can be supported by other humans in gesture
design and evaluation tasks through a combination of WOZ
and crowdsourcing. Inspired by earlier work [16], we see a
particular promise in making use of humans in experimental
gesture interfaces. Until recently, there was no recognition
system that could support multiple modalities using different
sensor data, e.g., from Kinect or Leap Motion. Only a recent
tool called Jackknife [30] comes with a suite of recognizers
that can work with few samples and many modalities. Being
targeted at developers, it requires that input is represented as
a sequence of discrete points in time. For designers who want
to experiment with multimodal gestures, there is no simple
yet flexible tool. Our goal for GestureWiz is to be such a tool.

We start by presenting crowdsourcing experiments that in-
formed the design of GestureWiz. We then describe our sys-
tem, its gesture design environment, and a client-side library
that enables designers to embed a human-powered recognizer
into any gesture-based interface with minimal configuration
effort. As part of the evaluation, we demonstrate the use of
GestureWiz by re-implementing three challenging gesture-
based interfaces from the literature. Finally, we present a
study with 12 interaction designers who were able to de-
sign novel and conflict-free gesture sets for a given example
slideshow application with GestureWiz in about 45 minutes.

RELATED WORK
Our work on GestureWiz builds on research in gesture-based
interface prototyping tools and crowd-powered recognizers.

Gesture-Based Interface Prototyping Tools
The research community has experimented with many differ-
ent tools to support gesture prototyping. For example, Ges-
ture Coder [17] and Gesture Studio [18] are two tools that

Figure 2. Output of our gesture recording software: 33% Complete, 67%
Complete, Complete (f.l.t.r., animated GIF omitted); plus an example
from the additional Video template set.

lower the threshold for developing multitouch gesture recog-
nition code by building on programming by demonstration
techniques. DejaVu [9] is an IDE extension that enables pro-
grammers to easily record, review, and reprocess temporal
data to iteratively improve the processing of Kinect camera
input. MAGIC [2] is a motion gesture design tool that pro-
vides facilities for experimenting with motion gestures. A
key feature of MAGIC is retrospection, allowing designers
to review previous actions by visualizing recorded gestures
and making a video recording available. GestureAnalyzer [8]
provides support for interactive hierarchical clustering of ges-
ture data based on multiple-pose visualisations. It was specif-
ically designed to support researchers in performing elicita-
tion studies, which is only one of the applications supported
by GestureWiz. Our goal with GestureWiz was to provide a
general input-agnostic gesture prototyping environment that
avoids the need for writing gesture recognition code and train-
ing recognizers by relying on crowdsourcing instead.

Crowd-Powered Recognizers
Crowd recognition as one of GestureWiz’s features is cen-
tral to much of the crowdsourcing work reported in the litera-
ture. Prominent examples include VizWiz [4] and Adrenaline
[3], which use camera-based recognition approaches and ex-
plored pre-recruiting models such as retainer to keep work-
ers on hold and reduce response times. More specifically re-
lated to GestureWiz, researchers have experimented with us-
ing crowdsourcing to produce gesture sets, extract features,
and train recognizers. For example, Gesture Marks [27] and
CrowdLearner [1] used crowds to develop and train gesture
sets for mobile applications. Gesture recognition similar to
GestureWiz was previously explored in systems like Glance
[13], where it was however limited to offline video. Ges-
tureWiz adopts many of the principles of these systems, but
explores live recognition with crowds by exploring new ways
of pushing tasks to workers as new gestures are performed.

The closest to GestureWiz are Apparition [14] and Zen-
sors [12] that coordinate workers in interface design tasks
or turn them into camera-based sensors where current tech-
nology fails. Yet, there are significant differences: a) Zen-
sors is aimed at questions on a higher level of abstraction
than required for gesture recognition; b) also, its “near real-
time” [12] capabilities of snapshots “every one or two sec-
onds” [12] is not sufficient since gestures require a much
higher sampling rate; and c) different from these two sys-
tems, GestureWiz recognition supports multimodal gestures,
live streaming, auto-looping, and conflict checking.

DESIGNING A CROWD-POWERED RECOGNIZER
Our goal is to enable designers to rapidly define and test ges-
ture sets using different input modalities, and to have them



recognized by crowd workers or a WOZ rather than an al-
gorithm. As a necessary first step to achieve this—and to
get a sense of the requirements posed by such a prototyping
environment—we conducted 6 initial experiments to inform
the design of our interfaces and get a feeling for the gesture
recognition capabilities of crowds under different conditions.
During the experiments, we varied three variables: the ges-
tures to be recognized (test set / test gestures), the gestures
to select the correct match from (template set / template ges-
tures), and the UI crowd workers were presented with.

In all experiments, we used the $1 gesture set defined by [33]
since its 16 gestures are well-established, well-studied, and
therefore provide a good baseline. To create gesture sets, we
built on a touch screen and a recording software we specif-
ically implemented for that purpose. For each gesture, the
software saved partial gestures (Fig. 2, left) as well as the
complete gesture in terms of a static PNG image and an an-
imated GIF image. As for the template sets, we carefully
reproduced the $1 single-stroke gestures using that software.
To also simulate 3D gestures, we recorded an additional set of
videos of a designer performing the gestures on a touch screen
(Fig. 2, right). This left us with a total of three static tem-
plate sets (referred to in the following as 33% Complete, 67%
Complete, and Complete) and two animated template sets (re-
ferred to in the following as Animated and Video). As for the
test sets, we asked a student to reproduce the $1 single-stroke
gestures using our software and recorded on the first try, as if
they were using the gestures in an actual application.

1st Iteration: Original UI
In the first iteration, we varied both the test set and the tem-
plate set (Tab. 1) in order to investigate crowd workers’ per-
formance with regard to incomplete gestures and whether ani-
mated gestures have an effect on recognition time (as opposed
to static ones). The crowd workers were presented with a sim-
ple comparison UI (referred to as the Original UI in the fol-
lowing) displaying one by one the queue of gestures from the
test set on the left, and the complete template set on the right,
from which the worker had to select the correct matches by
clicking the corresponding gesture (Fig. 3).

After being recruited on MTurk, 200 crowd workers recog-
nized a total of 1873 gestures in the four experiments.1 Our
results (Tab. 1) reveal two particular findings. First, crowd
workers are reasonably good at recognizing incomplete ges-
tures, with an accuracy of more than 75% for the test set
that is only one third complete and the animated templates.
One potential reason for workers being less accurate with the
static templates in this case might be that animated gestures
also show the incomplete states at some point, while the static
ones do not. Second, based on our Original UI, crowd work-
ers were significantly slower at recognizing complete and an-
imated gestures when being presented with an animated tem-
plate set.2 We hypothesize that this is due to the large amount
of gestures on the right-hand side of the UI, which causes
much more noise in the animated than in the static case; and
1In all results, outliers were excluded using Tukey’s test for outliers.
2Latency was tested for significance based on Mann–Whitney U
tests, while accuracy was tested using χ2 tests (α = .05).

particularly when being confronted with 3D video instead of
single-stroke gestures. While differences in accuracy are as
well significant when comparing the static to the animated
templates, results are still reasonably good, with a minimum
of 88% accuracy (static test set / video templates).

Based on these results, we decided for a second iteration of
experiments, altering the UI as an additional variable.

2nd Iteration: 1 vs. 1 UI
In a second round of experiments, we investigated accuracy
and recognition times of the crowd when being confronted
with different user interfaces and the Complete and Animated
test sets as well as the Animated and Video template sets. For
this, we created a second UI, named the 1 vs. 1 UI, which
splits a template set of N gestures into N pair-wise compar-
isons of the gesture to be recognized and the template ges-
tures. In this way, N crowd workers compare to one template
gesture each rather than having one crowd worker compare
to all N templates. A 1-on-1 comparison is the most basic,
atomic unit and presents the smallest possible cognitive load
to the worker. Hence, with this set-up, we intended to bring
down recognition times for animated templates while at least
retaining the accuracy from the previous experiments.

A total of 1846 crowd workers recruited on MTurk recog-
nized the same amount of gestures in experiments 5 & 6. Our
results (Tab. 2) show that based on the new UI, the crowd was
able to recognize gestures significantly more accurate in three
out of four cases, with accuracy being always above 90%.
Moreover, they were also significantly faster in all combina-
tions of test and template sets. This confirms our hypothesis
that splitting animated template sets clearly reduces noise for
the worker—particularly in the case of 3D video gestures—
and therefore makes for a better performance in terms of la-
tency while at least retaining accuracy.

Implications
The above results yield three implications that inform the de-
sign of the GestureWiz gesture design environment.

First, it seems feasible to use crowds for gesture recognition
in a prototyping scenario, from both a latency and in particu-
lar an accuracy standpoint. While GestureWiz can be slower
and less accurate than automatic techniques (e.g., $-family
with stroke gestures), such comparisons are of limited useful-
ness. Our approach supports gestures for which no automatic
techniques exist yet and is moreover a design environment,
not just a recognizer.

Second, we have learned that crowds are good at guessing
and resolving ambiguities in terms of incomplete gestures.
Therefore, in our prototyping environment, we will rely on
live streaming gestures as soon as they begin. In this way,
crowd workers can potentially recognize gestures even before
their articulation is completed.

Third, since workers had difficulties with animated template
gestures in our Original UI, we will include both interfaces
and provide designers with the option to choose the 1 vs. 1
UI for recognition. We will also show hints that recommend



template set Complete Animated Video
# test set ↓ accuracy (σ) time [s] (σ) accuracy (σ) time [s] (σ) accuracy (σ) time [s] (σ)
1 33% Complete .55 (.50) 6.01 (3.17) .76 (.43) 7.43 (4.02) — —
2 67% Complete .80 (.40) 6.06 (3.34) .89 (.31) 5.09 (2.78) — —
3 Complete .98 (.16) ?◦ 3.22 (1.08) •� .91 (.29) ? 4.14 (1.95) • .88 (.33) ◦ 8.31 (4.86) �
4 Animated .92 (.27) 5.03 (1.61) ∗/ .93 (.26) 5.89 (2.41) ∗ .92 (.27) 10.95 (5.95) /

Table 1. Accuracy and latency in experiments 1–4, based on our Original UI (? p < .01, ◦ • � ∗ / p < .001).

template set Animated Video
# test set ↓ accuracy (σ) time [s] (σ) accuracy (σ) time [s] (σ)

Original UI
3 Complete .91 (.29) ? 4.14 (1.95) � .88 (.33) ◦ 8.31 (4.86) /
4 Animated .93 (.26) 5.89 (2.41) ∗ .92 (.27) • 10.95 (5.95) .

1 vs. 1 UI
5 Complete .98 (.13) ? 2.22 (0.92) � .98 (.13) ◦ 3.38 (1.05) /
6 Animated .91 (.29) 2.97 (1.37) ∗ .97 (.16) • 4.01 (1.69) .

Table 2. Accuracy and latency in experiments 3–6, based on our Original UI and the 1 vs. 1 UI (• p < .01, ? ◦ � ∗ / . p < .001).

the use of the latter when the designed gesture set is not solely
comprised of static gestures.

THE GESTUREWIZ PROTOTYPING ENVIRONMENT
The GestureWiz prototyping environment consists of three
main components: a Requester UI for recording gestures and
conflict checking; the Worker UIs (Original and 1 vs. 1) for
recognizing recorded gestures using crowds or a WOZ; and
the GestureWiz library to be used in applications that shall
be enhanced with gesture recognition capabilities.

The GestureWiz workflow for a designer to define and test a
gesture set and their own application prototype is as follows:

(a) First, they can use the Requester UI in record mode and
capture a set of template gestures using one or more types
of input, then save them.

(b) In the next step—potentially consisting of several
iterations—the gesture set can be tested using the built-in
conflict checker to resolve ambiguities and adjust the de-
sign of the gestures.

(c) Subsequently, after extending the (optional) application
prototype to be controlled with the gestures with the Ges-
tureWiz library, arbitrary commands within the application
can be mapped to any of the defined gestures.

(d) Finally, test gestures can be streamed for recognition by
crowd workers or a WOZ who compare them to the pre-
viously saved templates, using any of the two available
Worker UIs. Streaming happens either through the Re-
quester UI’s recognition mode or a custom solution based
on the GestureWiz library. As soon as a gesture is recog-
nized, the corresponding command will be executed in the
application based on an asynchronous callback.

In the following, we explain our environment in more detail
along the lines of this workflow.

(a) Recording Gesture Sets using Multiple Inputs
GestureWiz’s Requester UI (Fig. 3) supports recording ges-
tures using a range of different input modalities. Currently,

mouse, pen, and multitouch strokes, as well as Kinect body
stream, Leap Motion, and video are supported (Fig. 3d). Due
to the flexible design of the prototyping environment, this can
be easily extended to new inputs. To do so, GestureWiz sup-
ports stream capture of anything drawn on an HTML5 canvas
element (Fig. 3b), from which it then automatically generates
video sequences that function as gesture templates.

Supplying Alternative Gesture Templates
New gesture templates immediately appear in the Requester
UI (Fig. 3f), allowing users to preview them in the way crowd
workers would see them in recognition mode. Templates the
designer is not satisfied with can be easily discarded using
the red minus button. This allows users to batch record sev-
eral templates of the same gesture, compare them visually in
the Requester UI or using the conflict checker, and keep the
template that best represents the intended gesture. Gesture
sets can be stored under a user-supplied name and reloaded,
allowing gesture recording in multiple independent sessions
and experimentation with different gesture sets.

Dealing with Gesture Representation Problems
Note that it is possible to produce multimodal gesture sets by
recording gestures using different inputs as part of the same
template set. This can be used to supply templates of differ-
ent types of gestures, e.g., surface vs. mid-air gestures, if the
application is to support multiple input modalities. However,
this can also be used to supply templates of the same gesture
type in different representations, e.g., Kinect body vs. camera
video sequences, for mid-air 3D gestures. This supports ex-
perimentation if it is not clear which representations are the
fastest to be recognized and matched by crowd workers.

Dealing with Gesture Segmentation Problems
Note that in record mode, stream capture for gesture record-
ing is manually controlled by the user via the space bar or
start/stop button. This not only allows for segmentation of
continuous interaction streams supplied by Kinects and cam-
eras, but also for recording gestures consisting of multiple
mouse, pen, or touch strokes. Recognition mode, however,
can work on a live stream. Crowds or WOZ simply select a
template as soon as they recognize a gesture in the stream.
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Figure 3. GestureWiz’s requester and worker UIs: (a) recognized gesture, time taken, and number of workers, (b) input canvas (here showing camera
video), (c) mode switch to record/recognize gestures, (d) input modality, (e) MTurk configuration, (f)+(g) gesture templates, (h) requester live video, and
(i) integrated conflict checker (3 X’s maximum).

(b) Resolving Ambiguities Using Conflict Checking
The integrated conflict checker automatically posts pair-wise
comparisons of all non-identical gestures in the template set
to MTurk, i.e., N(N − 1) comparisons for N gestures. Cur-
rently, each comparison (A,B) is assigned to three crowd
workers. If gesture A is incorrectly recognized as match-
ing gesture B, the pair of gestures is marked as ambiguous
(Fig. 3i). This provides valuable early-stage feedback and
supports rapid prototyping of less ambiguous gesture sets.

(c) Making Use of the GestureWiz Library
The optional end-user library included in our framework pro-
vides two tools. First, a method to set up a custom solution
for gesture streaming rather than relying on the requester in-
terface’s recognition mode, and second, a means to receive
gesture detection events in an application and invoke com-
mands accordingly. Both tools have been designed for min-
imal configuration effort and can be set up with a minimal
amount of code.

(d) Streaming Gestures in Nearly Real-Time
When the user activates the Requester UI’s recognition mode
and records a gesture, it is automatically streamed to the

Worker UI (Fig. 3h) rather than being added to the template
set. In the Worker UI, crowd workers or a WOZ compare
the incoming test gesture to the designer’s previously defined
template set in case of the Original UI (Fig. 3g), or to just one
of the template gestures in case of the 1 vs. 1 UI. When the
recording is completed, the Worker UI automatically replaces
the stream with a repeating video sequence of the test gesture.
In this way, a worker can observe the gesture already while
it is being articulated. If a worker enters after the stream was
closed, they are instead presented with the repeating video
sequence. This combination of live streaming and substitu-
tion with a repeating video yields the best chance of a fast
worker response. The reason for this is that crowd workers
have shown to be good at recognizing incomplete gestures
and therefore might correctly identify the gesture even before
it is completed by the requester.

To motivate good worker performance, the Worker UIs follow
a gamification approach. In the instructions, workers are in-
formed that they are competing against other workers to pro-
voke quick responses. This is realized by removing the test
gesture from the Worker UI as soon as an answer has been de-
livered to the requester and thereby “taking away” the gesture



Figure 4. Technical architecture of GestureWiz.

from workers that were too slow. To also ensure accuracy,
workers gain points in the form of stars for correct answers,
which grants them an according bonus payment in MTurk.

GestureWiz allows for pre-recruiting of crowdworkers al-
ready during the gesture design phase. That is, following the
approach by [3], they are kept on hold and notified as soon as
the designer starts streaming a gesture in recognition mode.
The currently available number of workers can be monitored
in the Requester UI in real-time (Fig. 3a).

Tuning Gesture Recognition Through Different UIs
There are two ways to influence the accuracy and recognition
speed of the system. First, the designer can choose between
presenting workers with the Original UI or with the 1 vs. 1
UI. The former is slower and slightly less accurate since one
worker has to take care of comparing all N gestures of a tem-
plate set to a test gesture. In the 1 vs. 1 UI, on the other
hand, N crowd workers take care of only one comparison
each, which makes it quicker and slightly more accurate. The
main drawback of the latter is the increased cost due to sig-
nificantly more tasks that have to be posted to MTurk. Also,
it is only feasible in a WOZ set-up ifN wizards are available.

Tuning Gesture Recognition Through Mediation Strategies
Second, because of the trade-off between fast and accurate
worker responses (independent of the UI), GestureWiz’s Re-
quester UI allows designers to tune the gesture recognition
settings concerning accuracy and latency. Based on common
mediation strategies, we provide three settings: fast—the re-
sult will be the first response by any worker; balanced—the
result will be the best of three worker responses; and accu-
rate—the result will be the best of five worker responses. If
the two latter options cannot determine a single winner, an
array of the gestures with the most votes is provided instead.

ARCHITECTURE, IMPLEMENTATION, & USAGE
In the following, we briefly introduce the technical architec-
ture of our prototyping environment, as well as its implemen-
tation and how to integrate it into external applications with
minimal programming effort.

Architecture
GestureWiz is based on a client–server architecture designed
for minimal programming and configuration effort for the
end-user. The server handles the communication with MTurk
as well as with the workers recruited for recognizing gestures.
On the client side, there is the Requester UI for prototyping

gesture sets, which is an integral part of the prototyping envi-
ronment and therefore comes with the server. Also on the
client side reside one or more UIs owned by the end-user
that make use of GestureWiz’s gesture recognition capabil-
ities. Both the Requester UI and the end-user UIs directly
communicate with the server but neither with one another nor
with MTurk. The gesture recognition itself happens asyn-
chronously, which makes the architecture callback-oriented.
It is possible to have the same or different UIs send gestures
and handle the answers received from workers or the WOZ.

Implementation & Usage
The GestureWizserver was implemented using Node.js.
Based on Socket.IO, it manages the communication between
the different parts of the system and provides endpoints for
invoking various methods of the MTurk API, which are used
by our client-side JavaScript library. The Requester UI was
realized based on HTML5 and JavaScript and features a can-
vas for recording template gestures, which are permanently
stored on the server along with corresponding identifiers. Af-
ter including our gesturewiz.js library, the end-user initial-
izes the system in their UI by referencing the canvas element
recording the gestures that shall be detected as well as the
unique identifier of a previously stored set of template ges-
tures. Additionally, they define a callback to be invoked when
a gesture has been recognized.

1 const wiz = new GestureWiz().init(canvas, templateSet)
2 .ongesture(function(detectedGesture) { /* ... */ });

After initialization, gesture recognition is invoked by calling
the recognize() method, optionally specifying accuracy as a
parameter. Once this has happened, via WebRTC the content
of the previously referenced canvas is streamed in real time to
the Worker UI that is shown to the crowd workers recruited by
the server (or the WOZ). Recruiting can either happen manu-
ally by using dedicated methods provided by gesturewiz.js or
automatically by passing an additional parameter to init().
Unless the end-user calls the method for deactivating MTurk,
the server automatically ensures that the number of active
workers stays constant at a predefined value. If the interface
handling the detected gestures is different from that sending
the gestures, the end-user invokes toClient("myUI") instead of
ongesture(). The other interface then needs to include and
initialize our gesturewiz-client.js library:

1 const wizClient = new GestureWizClient("myUI")
2 .ongesture(function(detectedGesture) { /* ... */ });

GESTUREWIZ APPLICATIONS
In this section, we present three applications we created us-
ing GestureWiz: (1) a maps viewer using touch gestures for
zooming, (2) a video player using Kinect hand gestures for
playback and volume control, and (3) a watch+phone email
app using cross-device gestures for notification management.
Both the input (multitouch, Kinect, video) and the types of
gestures (surface vs. mid-air) varied between applications.
With these examples, we demonstrate the feasibility and ef-
fectiveness of GestureWiz, as well as the range of applica-
tions and gesture modalities that can be prototyped.



Figure 5. Gestures recorded using GestureWiz for (a) a maps app using
multitouch zoom in/out gestures (based on [32, 22]); (b) a video player
using Kinect hand gestures (based on [31, 20, 25]); and (c) cross-device
gestures from Duet [5].

Figure 6. Example integration of the GestureWiz library and mapping
of gestures to corresponding functions in our YouTube app.

Multitouch Stroke Gestures with GestureWiz
First, we created a maps viewer using the Google Maps API.
Based on guessability studies carried out by Wobbrock et
al. [32] and Morris [22], we recreated four surface gestures
for zooming the map in and out by recording multitouch
strokes using GestureWiz. Our set consisted of two pairs
of gestures: hand swipe left/right and finger stroke left/right
(Fig. 5a). We embedded the GestureWiz library into the ap-
plication and mapped the corresponding multitouch strokes
to zoom in/out functions in the maps viewer.

Kinect Body Gestures with GestureWiz
Second, we created a video player using the YouTube API.
Inspired by elicitation studies from Vatavu [31], Morris [20],
and Nebeling et al. [25], we recreated six mid-air gestures
for volume and playback control by recording Kinect body
streams using GestureWiz. Our set consisted of three pairs
of gestures: flick hands left/right, move hands up/down, and
move hands apart/together (Fig. 5b). Again, based on the
GestureWiz library, we mapped gestures recognized from
Kinect body streams to video seeking and volume control
functions in the video player (Fig. 6).

Video Cross-Device Gestures with GestureWiz
Third, we created a cross-device email app adapted from XD-
Browser [24] using four cross-device gestures inspired by
Duet [5]. Our set consisted of two pairs of swipe and pinch
gestures from watch to phone and vice versa (Fig. 5c). These
gestures were originally created by researchers to explore

# N accuracy (σ) t [s] (σ)
$1 unistroke 16 2284 .99 (.18) 3.92 (1.20)

Multitouch 4 152 .81 (.39) 5.62 (1.93)
Kinect 6 348 .91 (.29) 6.59 (4.22)
Video 4 150 .79 (.41) 7.38 (3.89)

total 30 2934 .96 (.20) 4.50 (2.33)
Table 3. Crowd recognition benchmarks for different modalities
(# = number of gestures).

joint interactions between watch and phone. We recreated
them by recording the interactions in terms of video gestures
using GestureWiz, then mapped gestures recognized from
video streams to visual feedback indicating whether notifi-
cations were enabled on each device.

Crowd Recognition Experiments
To investigate GestureWiz’s robustness w.r.t. different gesture
modalities, we report recognition accuracy and latency for
each of the three animated gesture sets recreated for the above
applications—plus the $1 Video gestures from our initial ex-
periments as a baseline. Due to the animated nature of the
gesture sets, the experiments are based on comparisons using
the 1 vs. 1 UI (Tab. 3). For each application, the authors of
this paper carefully reproduced the selected gestures in terms
of a template set, performing each gesture very clearly. Addi-
tionally, we created corresponding sets of test gestures, which
we performed faster and recorded at the first try, in order to
simulate real-world gesture input in an application. Then, for
each example application withN gestures, we createdN×N
1-on-1 comparisons and recruited 10 crowd workers per com-
parison. While GestureWiz uses established techniques for
recruiting and keeping multiple workers on hold, it does not
make use of parallel crowd workflows yet [10, 11]. Using
1-on-1 comparisons with pre-recorded gesture sets, however,
we created a benchmark for the performance of GestureWiz
as if these techniques were adopted and gesture sets divided
into the smallest possible, atomic units. The performance of
parallel and instantly available crowd workers performing N
comparisons to find a sample gesture in an N -gesture tem-
plate set should not differ from a single comparison.

In these experiments, we expected a decrease in accuracy and
an increase in latency the more complex the gesture set gets.
Thus, in Tab. 3, the gesture sets are sorted from least to most
complex (least complex at the top), as anticipated before the
study. Overall, we investigated 30 gestures that were recog-
nized by a total of 2934 crowd workers (after removing out-
liers). Results show a minimum accuracy of 79%, which was
recorded for the Duet gestures that were recorded as videos
and used in the watch+phone email app. The maximum ac-
curacy of 99% was achieved by the $1 unistroke gestures that
served as our baseline. The same gesture set also achieved the
minimum latency of 3.92 s, while the maximum was again
recorded for the Duet gestures (7.38 s). This largely confirms
our hypothesis concerning the relationship between complex-
ity, accuracy, and latency, with the exception of the Kinect
gestures, which were recognized more accurately than the
multitouch set. The most probable reason is that although
the Kinect gestures are more noisy and in general seem more



Mouse/Pen Touch Kinect Camera/Video
mean 4.33 4.33 2.58 2.50

median 5 5 2.5 2
Table 4. Participants expertise with using/designing gestures using dif-
ferent modalities based on a 5-point scale (1=no knowledge, 5=expert).

complex (due to the larger number of visual features), the
multitouch gestures are more ambiguous (Fig. 5), thus po-
tentially leading to more incorrect recognitions. Results for
the $1 unistroke gestures moreover confirm our initial exper-
iments since we replicated the set-up with the Animated test
set and Video template set in a 1 vs. 1 setting (Tab. 2, accuracy
= 97%, latency = 4.01 s).

In summary, the applications implemented with GestureWiz
as well as the experimental results show the robustness and
feasibility of our environment in prototyping scenarios that
employ a multitude of modalities. We are able to rapidly de-
fine established gestures from the literature and seamlessly
integrate them into (existing) applications. Overall, it took
less than 90 minutes to record the template as well as test
sets and integrate the GestureWiz library in all three applica-
tions. Based on crowd workers, the prototyped gestures can
be recognized with reasonable accuracy and latency even in
ambiguous, noisy, and complex cases. Across the different
modalities that were investigated, we were able to record an
average accuracy of 96% at an average latency of 4.50 s.

STUDY WITH INTERACTION DESIGNERS
To also study the gesture prototyping process based on Ges-
tureWiz in situ in an exploratory setting, we conducted an ad-
ditional study with interaction designers, i.e., all participants
took at least one course on interaction design in university.
Our aim is to show that participants are able to quickly un-
derstand and use our prototyping environment for designing
and testing a gesture set for a specific use case. Although we
as well report recognition performance in the following, the
focus of this study lies on the prototyping process. Therefore,
we did not specifically optimize the set-up of GestureWiz for
maximum accuracy and recognition speed during the study.

Method
The study was divided into four parts—informed consent,
gesture definition, conflict resolution, and gesture recogni-
tion. It was carried out in teams of two, i.e., we studied six
teams of interaction designers, with 12 participants in total
(average age of 23.8 years, six male, six female). Each team
completed the whole study in about 60 minutes (introduction
and informed consent took about 15 minutes in each case).
We chose to have participants co-design their gesture sets
since firstly, this set-up has proven to be particularly feasi-
ble for gesture prototyping [21], and secondly, we juxtaposed
WOZ recognition to crowd recognition.

First, we introduced participants to the functionalities of the
Requester UI and a simple slideshow application we imple-
mented for the purpose of the study. Subsequently, we asked
them to together design pairs of gestures for going to the nex-
t/previous slide, using GestureWiz’s recording functionality.
Using production [21], we encouraged them to try as many

suitable gestures as they could think of, including unconven-
tional ones. We limited the modality to mid-air 3D gestures
recorded as videos (using Kinect) due to the lack of feasible
and effective existing solutions. Such gestures are the most
challenging use case for existing approaches and therefore
also the most relevant one with respect to GestureWiz. In the
second phase, participants were introduced to the integrated
conflict checker to test gestures for ambiguities and poten-
tially adjust their gesture sets. After that, the two team mem-
bers took turns in doing WOZ recognition—one acting as the
wizard and one performing live gestures to be recognized.
In a final step, both team members performed live gestures
that were streamed to and recognized by pre-recruited crowd
workers. To ensure comparability of results, we chose the
Original UI for both, the WOZ and the crowd set-up. Also,
to be able to reliably measure performance, we manually seg-
mented the gestures to be recognized, rather than working
with a stream. After that, participants were asked to give
feedback based on a post-study questionnaire. The teams pro-
duced sets ranging from six to 12 gestures (avg. = 9, median
= 9), with a clear majority of swipe, pull, point, and “click”
gestures. See Tab. 4 for more demographic information.

Observations
During the whole study process, participants were observed
by one investigator while another acted as the study facilita-
tor. In the following, we report the main observations.

(O1) Four out of six teams recorded multiple instances of at
least one gesture and then kept only the best one after review,
deleting the others.

(O2) In three cases, a designer who performed a live ges-
ture for recognition did a different gesture than intended (e.g.,
moving their arm left instead of right), stating as the reason
that Kinect mirrors the recorded video.

(O3) Although we pre-recruited crowd workers, in three cases
the only worker left the Worker UI before the current gesture
was recognized. This led to unusually long recognition times.

(O4) Two designers explicitly stated that a particular gesture
might have been performed too fast for correct recognition.
One did so immediately after recording (“The crowd is going
to miss that one.”) and one during conflict checking.

(O5) Three teams noted that certain gestures (particularly
pointing gestures) might be too small to be recognized cor-
rectly. (“Pointing with one finger is probably not clear enough
for workers.”)

(O6) Five out of six teams agreed with most of the conflicts
detected by the conflict checker and subsequently stated they
wanted to adjust their gesture set according to the feedback.

(O7) Two teams disagreed with conflicts in which crowd
workers got the direction of the gesture wrong (e.g., recog-
nized swipe left as swipe right).

(O8) In relation to O7, for three teams the conflict checker
reported conflicts for pairs of gestures that seemed to be mir-
rored versions of the same gesture (e.g., swipe left/right with
different arms).



Statement mean median
Felt easy to design new gestures 4.75 5.5
Felt fast to design new gestures 4.67 4.5
Enjoyed designing new gestures 6.17 6
Felt easy to test new gestures 5.50 6
Felt fast to test new gestures 4.83 5
Enjoyed testing new gestures 5.58 6
WOZ accuracy was good enough 5.75 6
WOZ speed was good enough 5.33 5.5
Crowd accuracy was good enough 3.42 3
Crowd speed was good enough 3.83 4
Comparable to existing systems 5.00 5.5

Table 5. Participants’ ratings for 11 statements on a 7-point Likert scale.

(O9) Three teams noted that the segmentation of at least one
gesture was not as intended and suggested this led to lower
recognition accuracy.

(O10) Three teams (in which participants wore significantly
different clothing) noted during that crowd workers seemed
to be orienting at their clothing for recognition, which led to
incorrect results. Yet, for two of the teams, crowd workers
still managed to correctly recognize gestures in several cases.

(O11) Three teams decided to not change conflicting gestures
that were intended to be different but trigger the same action.

(O12) Three teams suggested that conflicting gestures might
be due to unclear starting points.

(O13) Besides straightforward gestures, participants also
recorded a number of more unconventional ones, like kick-
ing left/right or single-finger swipes on the opposite forearm.

Feedback
In the post-study questionnaire, participants were asked what
they considered as the main benefits (B) and limitations (L) of
GestureWiz. Their answers are summarized in the following.

(B1) Four participants stated that GestureWiz is easy and fast
to control (or use, respectively).

(B2) The conflict resolution capabilities were mentioned as a
main benefit three times. One designer mentioned that Ges-
tureWiz helps with understanding how people perceive ges-
ture similarity.

(B3) Three participants positively noted that the our envi-
ronment allows (potentially multiple) designers to understand
gestures better and get quick feedback.

(B4) One designer mentioned the possibility to test gestures
in different ways (WOZ, crowds) as a main benefit. One men-
tioned the general flexibility of the environment.

(B5) “The system provides good feedback” was mentioned as
the main benefit by one participant.

(L1) As a main limitation, two participants referred to pri-
vacy issues (regarding video recording and how it affects the
choice of gestures).

(L2) Two participants stated that the recognition speed was
suboptimal. One mentioned bad accuracy.

time [s] σ accuracy σ
Wizard of Oz 3.22 2.01 .83 .38

Crowd 5.43 4.30 .46 .50
Table 6. WOZ and crowd recognition performance during the study.

(L3) One designer mentioned that crowd workers pay atten-
tion to irrelevant details in the recorded video that are not
intended to be part of the gesture.

(L4) Another designer noted that recognition results are af-
fected by crowd workers’ motivation.

(L5) The fact that GestureWiz only tests the similarity of ges-
tures, but not whether a gesture is difficult to perform for the
user was mentioned as the a limitation by one participant.

(L6) One participant noted that incorrect segmentation is an
issue that affects recognition.

We moreover asked the interaction designers to rate different
statements on a 7-point Likert scale (Tab. 5). In general, they
reported a good experience of designing and testing new ges-
tures using GestureWiz. WOZ accuracy and speed were rated
clearly above average while crowds fell behind in this respect.
The latency of crowd workers was considered average (me-
dian = 4) while their accuracy was rated below average with a
median of 3. Finally, participants somewhat agreed with the
statement that GestureWiz is comparable to existing systems.

Recognition
Across all teams, we recorded a total of 99 gestures recog-
nized by WOZs and 94 by crowd workers (after removing
outliers). Overall, the WOZ set-up provided a better recog-
nition performance concerning both, accuracy and latency
(Tab. 6). This seems natural since the wizards had the advan-
tage of trying to recognize gestures they co-designed them-
selves. While crowd accuracy is below 50% for the study set-
up, crowd latency is lower than that of the video gestures in
the crowd recognition experiments described earlier, despite
being based on the Original UI.

Findings
From the above observations, feedback, and recognition per-
formance, we can derive a number of findings. First, inter-
action designers generally find our prototyping environment
quick and easy to use (B1, Tab. 5) and especially appreci-
ate its conflict resolution capabilities (O6, B2) and the sup-
port it provides for designers (B3, B4, B5). Also, partici-
pants on average stated that GestureWiz provides an enjoy-
able experience of designing and testing gestures (Tab. 5). “It
is fun! Feedback for recognition is straightforward,” was a
statement by one designer. Second, whether gestures have
to be performed exactly depends on the similarity to other
templates and individual differences between human recog-
nizers (L3, L4). In our study, a certain degree of variation
was possible since some workers were invariant to orientation
(O7, O8) or correctly recognized gestures despite different
clothing (O10). Third, interaction designers clearly approve
of WOZ recognition capabilities as opposed to crowds (L2,
L3, L4), which is supported by the quantitative recognition
results. Fourth, however, crowd workers were impaired by



some specific circumstances that were not present during the
experiments we reported on earlier. One such factor was that
two persons contributed gestures to the same set, which led
to the problem of workers treating clothing and other irrele-
vant details as part of the gesture (O10, L3). One participant
described this as “clothes-driven gesture recognition”. More-
over, gestures in which two variables were inverted compared
to another gesture (e.g., swipe left with right arm vs. swipe
right with left arm) and which therefore appeared to be mir-
rored posed problems to, not only crowd workers (O7, O8),
but even some designers (O2). In addition, some designers
consciously decided against revising conflicting gestures in
case they were intended for the same action anyway (O11).
Finally, the gestures recorded during the study were ad-hoc
and therefore generally noisy, which as well posed potential
problems to the crowd workers (O4, O5, O9, O12, L6).

These findings not only confirm that mid-air 3D gestures are
a non-trivial use case, but also provide valuable input for re-
vising and improving GestureWiz. For instance, irrelevant
features such as bright colors could be reduced by applying
filters to a video loop before showing it to workers. Also, the
mirroring issue could be prevented by adding artificial fea-
tures to the video gestures to make them clearly distinguish-
able, which is a potential solution proposed by one partici-
pant. We will consider this in future versions of GestureWiz.

DISCUSSION & LIMITATIONS
GestureWiz has numerous real-world applications, especially
in situations with a lack of required hardware or mixed
modalities. One example is a designer who intends to cre-
ate a set of hand gestures for Kinect and Leap Motion, but
does not have the systems available. Another example is an
application combining a whiteboard and HoloLens, in which
mid-air hand gestures and drawn gestures on the board should
be supported. In both cases, GestureWiz enables rapid proto-
typing of the corresponding gesture sets with just a webcam.

However, our system still has some limitations. First, it is
difficult to establish a quantitative baseline for our study. We,
among other things, aim at situations for which no reliable al-
gorithmic recognizers exist yet, like arbitrary and noisy mid-
air 3D gestures. For instance, [29, 30] are ill-suited for com-
parison: they only aim at hand gestures or require time-series
data rather than raw video. Thus, they would not have worked
with many gestures from our study. We want to stress again
that such performance comparisons are not central to our goal
of providing a gesture design environment.

Second, it would be desirable to automatically learn mod-
els from gestures recognized by humans. Zensors [12] trains
classifiers based on individual, static image snapshots. Trans-
lating this to GestureWiz, however, would mean training clas-
sifiers from live video. This requires further research and a
different, spatio-temporal approach, i.e., detecting not only
where things are, but also how they move between frames in
short periods of time (<1s for some gestures).

Third, GestureWiz does not yet have dedicated support for
dynamic gestures. Yet, our results for partial gestures suggest
that early recognition is possible (Tab. 1). For dynamic ges-

tures like drag’n’drop, early recognition could be simulated
by recording start and end portions as separate templates.
Tracking features like gesture size and orientation would re-
quire templates of different size and orientation. A more so-
phisticated approach would require crowd tracking and re-
mote UI manipulation similar to Legion [15].

CONCLUSION
We have presented the GestureWiz prototyping environment
that provides designers with an integrated solution for gesture
definition, conflict checking, and recognition in nearly real-
time using Wizard of Oz or crowdsourcing set-ups. Informed
by initial experiments with crowd workers, we developed op-
timized interfaces for requesters and workers and suitable
strategies for recognition. To prove the feasibility and ef-
fectiveness of our approach, we prototyped and tested three
applications featuring different input modalities and kinds
of gestures, which would typically require multiple gesture
recognition libraries and significant programming skills.

An explorative study with 12 interaction designers revealed
benefits and limitations of our approach. Participants gener-
ally appreciated the possibility to quickly and easily define
and test new gestures, as well as the integrated conflict reso-
lution functionality and enjoyed using GestureWiz. All of the
interaction designers, in pairs of two, were able to create and
test gesture sets from scratch and have them recognized by a
WOZ and crowd workers in about 45 minutes. Code and data
are available at https://github.com/mi2lab/gesturewiz.

Our larger vision behind this work is to enable interactive sur-
faces and spaces anytime, anywhere. GestureWiz provides an
important first step towards this vision. It is now possible to
walk into an interactive room, experiment with different kinds
of non-trivial gestures and test them on the spot, without hav-
ing to write a single line of gesture recognition code. In the
future, it will be interesting to formalize the gesture defini-
tion and recognition approach using crowds to support guess-
ability studies while enabling quick testing and revision using
GestureWiz. On the crowdsourcing side, future work needs
to investigate how to mitigate the shortcomings related to ac-
curacy and latency that were revealed during the user study.
Another direction of work we intend to address is making use
of the data provided by WOZ and crowds to automatically
train corresponding machine learning models, thus facilitat-
ing recognition after the prototyping stage.
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