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Figure 1. GestureWiz provides a rapid prototyping environment for gesture-based interfaces via a record–recognize–run pattern: record 2D/3D gestures
using a video-based record–replay tool to form mouse, multi-touch, multi-device, and full-body gesture sets (left), use Wizard of Oz optionally powered
by crowds to recognize gestures from a given set (middle), and run the resulting human-powered recognizer in user interface prototypes (right).

ABSTRACT
Designers and researchers often rely on simple gesture rec-
ognizers like Wobbrock et al.’s $1 for rapid user interface
prototypes. However, most existing recognizers are limited
to a particular input modality and/or pre-trained set of ges-
tures, and cannot be easily combined with other recognizers.
In particular, creating prototypes that employ advanced touch
and mid-air gestures still requires significant technical expe-
rience and programming skill. Inspired by $1’s easy, cheap,
and flexible design, we present the GestureWiz prototyping
environment that provides designers with an integrated solu-
tion for gesture definition, conflict checking, and real-time
recognition by employing human recognizers in a Wizard of
Oz manner. We present a series of experiments with design-
ers and crowds to show that GestureWiz can perform with
reasonable accuracy and latency. We demonstrate advantages
of GestureWiz when recreating gesture-based interfaces from
the literature and conducting a study with 12 interaction de-
signers that prototyped a multimodal interface with support
for a wide range of novel gestures in about 45 minutes.
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INTRODUCTION
With the proliferation of many new types of devices and input
sensors, such as AR-capable phones and HoloLens, design-
ers face an increased need to support novel forms of touch
and gesture-based interaction. While there is an increasing
range of gesture recognition tools for developers [17, 29, 30],
support for designers is still limited [33]. First, recognizers
are constrained by what is feasible with current technology
and not necessarily determined by what is desired by users
[32]. Second, during design, gestures typically vary both in
fidelity and modality, and gesture sets can quickly grow in
complexity and raise potential for ambiguity. In many cases,
this poses very different technical requirements. For exam-
ple, if the designer wants to support finger instead of full-
body gestures, this also requires different sensing hardware
and different models and algorithms at the system level [25].

There is an important research trend to obtain gesture sets
from users, rather than designers, through elicitation stud-
ies [32]. In these studies, system designers prompt the end-
users to demonstrate gestures they would like to use to ex-
ecute a given system command, and user agreement deter-
mines the most popular gestures that make up the set [22,
32]. Apart from less constrained and less biased designs [21,
32], researchers have argued for other advantages to this par-
ticipatory design approach in terms of memorability [23] and
personalization [26]. While there are many advantages for the
design, there are also new challenges for the implementation.

Most studies end with elicitation and do not consider imple-
mentation in actual recognizers. This raises two issues. First,
significant development effort can be required to mitigate am-
biguity and conflicts in user-defined gesture sets. For exam-
ple, a gesture set elicited for a living-room TV web-browsing
scenario [20] required significant refinement and, in some
cases, substitution with alternative gestures to provide sup-
port in an actual Kinect-based system [25]. Second, multiple
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input sensors may be required for the implementation. For ex-
ample, a recent study with 20 participants produced a set of
the 44 most frequently suggested interactions for 40 common
interaction tasks in AR interfaces [28]. Providing an imple-
mentation for this gesture set would require both �nger and
hand gesture recognition as well as virtual and physical object
tracking. User interface prototypes using this gesture set can-
not be done without extensive engineering, and may not even
be feasible with existing toolkits and gesture recognizers.

We presentGestureWiz, a gesture-based interface prototyping
environment that providesa) means to rapidly recordmulti-
modal gestures, e.g., multitouch, Kinect, Leap Motion, and
mid-air 3D gestures;b) a human-powered gesture recognizer
that works without system implementation and instead uses a
Wizard of Oz(WOZ) or crowdsourcingapproach; andc) an
integrated crowd-powered gestureambiguity checker. A par-
ticular strength of our system is the �exibility to use different
types of human recognizers. We support using a local Wizard
or online crowds if the recognition workload would be too
large for a single human. For example, AR research has pre-
viously experimented with WOZ approaches [6, 7, 19], but
found the six degrees of freedom too dif�cult to handle.

In contrast to much of the existing crowdsourcing work, our
goal isnot to establish that crowds can also do gesture recog-
nition. Rather, we focus on designers and want to study in
which ways they can be supported by other humans in gesture
design and evaluation tasks through a combination of WOZ
and crowdsourcing. Inspired by earlier work [16], we see a
particular promise in making use of humans in experimental
gesture interfaces. Until recently, there was no recognition
system that could support multiple modalities using different
sensor data, e.g., from Kinect or Leap Motion. Only a recent
tool called Jackknife [30] comes with a suite of recognizers
that can work with few samples and many modalities. Being
targeted at developers, it requires that input is represented as
a sequence of discrete points in time. For designers who want
to experiment with multimodal gestures, there is no simple
yet �exible tool. Our goal for GestureWiz is to be such a tool.

We start by presenting crowdsourcing experiments that in-
formed the design of GestureWiz. We then describe our sys-
tem, its gesture design environment, and a client-side library
that enables designers to embed a human-powered recognizer
into any gesture-based interface with minimal con�guration
effort. As part of the evaluation, we demonstrate the use of
GestureWiz by re-implementing three challenging gesture-
based interfaces from the literature. Finally, we present a
study with 12 interaction designers who were able to de-
sign novel and con�ict-free gesture sets for a given example
slideshow application with GestureWiz in about 45 minutes.

RELATED WORK
Our work on GestureWiz builds on research in gesture-based
interface prototyping tools and crowd-powered recognizers.

Gesture-Based Interface Prototyping Tools
The research community has experimented with many differ-
ent tools to support gesture prototyping. For example, Ges-
ture Coder [17] and Gesture Studio [18] are two tools that

Figure 2. Output of our gesture recording software:33% Complete, 67%
Complete, Complete(f.l.t.r., animated GIF omitted); plus an example
from the additional Videotemplate set.

lower the threshold for developing multitouch gesture recog-
nition code by building on programming by demonstration
techniques. DejaVu [9] is an IDE extension that enables pro-
grammers to easily record, review, and reprocess temporal
data to iteratively improve the processing of Kinect camera
input. MAGIC [2] is a motion gesture design tool that pro-
vides facilities for experimenting with motion gestures. A
key feature of MAGIC is retrospection, allowing designers
to review previous actions by visualizing recorded gestures
and making a video recording available. GestureAnalyzer [8]
provides support for interactive hierarchical clustering of ges-
ture data based on multiple-pose visualisations. It was specif-
ically designed to support researchers in performing elicita-
tion studies, which is only one of the applications supported
by GestureWiz. Our goal with GestureWiz was to provide a
general input-agnostic gesture prototyping environment that
avoids the need for writing gesture recognition code and train-
ing recognizers by relying on crowdsourcing instead.

Crowd-Powered Recognizers
Crowd recognition as one of GestureWiz's features is cen-
tral to much of the crowdsourcing work reported in the litera-
ture. Prominent examples include VizWiz [4] and Adrenaline
[3], which use camera-based recognition approaches and ex-
plored pre-recruiting models such as retainer to keep work-
ers on hold and reduce response times. More speci�cally re-
lated to GestureWiz, researchers have experimented with us-
ing crowdsourcing to produce gesture sets, extract features,
and train recognizers. For example, Gesture Marks [27] and
CrowdLearner [1] used crowds to develop and train gesture
sets for mobile applications. Gesture recognition similar to
GestureWiz was previously explored in systems like Glance
[13], where it was however limited to of�ine video. Ges-
tureWiz adopts many of the principles of these systems, but
explores live recognition with crowds by exploring new ways
of pushing tasks to workers as new gestures are performed.

The closest to GestureWiz are Apparition [14] and Zen-
sors [12] that coordinate workers in interface design tasks
or turn them into camera-based sensors where current tech-
nology fails. Yet, there are signi�cant differences:a) Zen-
sors is aimed at questions on a higher level of abstraction
than required for gesture recognition;b) also, its “near real-
time” [12] capabilities of snapshots “every one or two sec-
onds” [12] is not suf�cient since gestures require a much
higher sampling rate; andc) different from these two sys-
tems, GestureWiz recognition supports multimodal gestures,
live streaming, auto-looping, and con�ict checking.

DESIGNING A CROWD-POWERED RECOGNIZER
Our goal is to enable designers to rapidly de�ne and test ges-
ture sets using different input modalities, and to have them



recognized by crowd workers or a WOZ rather than an al-
gorithm. As a necessary �rst step to achieve this—and to
get a sense of the requirements posed by such a prototyping
environment—we conducted 6 initial experiments to inform
the design of our interfaces and get a feeling for the gesture
recognition capabilities of crowds under different conditions.
During the experiments, we varied three variables: the ges-
tures to be recognized (test set / test gestures), the gestures
to select the correct match from (template set / template ges-
tures), and the UI crowd workers were presented with.

In all experiments, we used the $1 gesture set de�ned by [33]
since its 16 gestures are well-established, well-studied, and
therefore provide a good baseline. To create gesture sets, we
built on a touch screen and a recording software we specif-
ically implemented for that purpose. For each gesture, the
software saved partial gestures (Fig. 2, left) as well as the
complete gesture in terms of a static PNG image and an an-
imated GIF image. As for the template sets, we carefully
reproduced the $1 single-stroke gestures using that software.
To also simulate 3D gestures, we recorded an additional set of
videos of a designer performing the gestures on a touch screen
(Fig. 2, right). This left us with a total of three static tem-
plate sets (referred to in the following as33% Complete, 67%
Complete,andComplete) and two animated template sets (re-
ferred to in the following asAnimatedandVideo). As for the
test sets, we asked a student to reproduce the $1 single-stroke
gestures using our software and recorded on the �rst try, as if
they were using the gestures in an actual application.

1st Iteration: Original UI
In the �rst iteration, we varied both the test set and the tem-
plate set (Tab. 1) in order to investigate crowd workers' per-
formance with regard to incomplete gestures and whether ani-
mated gestures have an effect on recognition time (as opposed
to static ones). The crowd workers were presented with a sim-
ple comparison UI (referred to as theOriginal UI in the fol-
lowing) displaying one by one the queue of gestures from the
test set on the left, and the complete template set on the right,
from which the worker had to select the correct matches by
clicking the corresponding gesture (Fig. 3).

After being recruited on MTurk, 200 crowd workers recog-
nized a total of 1873 gestures in the four experiments.1 Our
results (Tab. 1) reveal two particular �ndings. First, crowd
workers are reasonably good at recognizing incomplete ges-
tures, with an accuracy of more than 75% for the test set
that is only one third complete and the animated templates.
One potential reason for workers being less accurate with the
static templates in this case might be that animated gestures
also show the incomplete states at some point, while the static
ones do not. Second, based on our Original UI, crowd work-
ers were signi�cantly slower at recognizing complete and an-
imated gestures when being presented with an animated tem-
plate set.2 We hypothesize that this is due to the large amount
of gestures on the right-hand side of the UI, which causes
much more noise in the animated than in the static case; and
1In all results, outliers were excluded usingTukey's test for outliers.
2Latency was tested for signi�cance based onMann–Whitney U
tests, while accuracy was tested using� 2 tests(� = :05).

particularly when being confronted with 3D video instead of
single-stroke gestures. While differences in accuracy are as
well signi�cant when comparing the static to the animated
templates, results are still reasonably good, with a minimum
of 88% accuracy (static test set / video templates).

Based on these results, we decided for a second iteration of
experiments, altering the UI as an additional variable.

2nd Iteration: 1 vs. 1 UI
In a second round of experiments, we investigated accuracy
and recognition times of the crowd when being confronted
with different user interfaces and theCompleteandAnimated
test sets as well as theAnimatedandVideotemplate sets. For
this, we created a second UI, named the1 vs. 1 UI, which
splits a template set ofN gestures intoN pair-wise compar-
isons of the gesture to be recognized and the template ges-
tures. In this way,N crowd workers compare to one template
gesture each rather than having one crowd worker compare
to all N templates. A 1-on-1 comparison is the most basic,
atomic unit and presents the smallest possible cognitive load
to the worker. Hence, with this set-up, we intended to bring
down recognition times for animated templates while at least
retaining the accuracy from the previous experiments.

A total of 1846 crowd workers recruited on MTurk recog-
nized the same amount of gestures in experiments 5 & 6. Our
results (Tab. 2) show that based on the new UI, the crowd was
able to recognize gestures signi�cantly more accurate in three
out of four cases, with accuracy being always above 90%.
Moreover, they were also signi�cantly faster in all combina-
tions of test and template sets. This con�rms our hypothesis
that splitting animated template sets clearly reduces noise for
the worker—particularly in the case of 3D video gestures—
and therefore makes for a better performance in terms of la-
tency while at least retaining accuracy.

Implications
The above results yield three implications that inform the de-
sign of the GestureWiz gesture design environment.

First, it seems feasible to use crowds for gesture recognition
in a prototyping scenario, from both a latency and in particu-
lar an accuracy standpoint. While GestureWiz can be slower
and less accurate than automatic techniques (e.g., $-family
with stroke gestures), such comparisons are of limited useful-
ness. Our approach supports gestures for which no automatic
techniques exist yet and is moreover a design environment,
not just a recognizer.

Second, we have learned that crowds are good at guessing
and resolving ambiguities in terms of incomplete gestures.
Therefore, in our prototyping environment, we will rely on
live streaming gestures as soon as they begin. In this way,
crowd workers can potentially recognize gestures even before
their articulation is completed.

Third, since workers had dif�culties with animated template
gestures in our Original UI, we will include both interfaces
and provide designers with the option to choose the 1 vs. 1
UI for recognition. We will also show hints that recommend



template set Complete Animated Video
# test set# accuracy (� ) time [s] (� ) accuracy (� ) time [s] (� ) accuracy (� ) time [s] (� )
1 33% Complete .55 (.50) 6.01 (3.17) .76 (.43) 7.43 (4.02) — —
2 67% Complete .80 (.40) 6.06 (3.34) .89 (.31) 5.09 (2.78) — —
3 Complete .98 (.16)?� 3.22 (1.08)�� .91 (.29)? 4.14 (1.95)� .88 (.33)� 8.31 (4.86)�
4 Animated .92 (.27) 5.03 (1.61)� / .93 (.26) 5.89 (2.41)� .92 (.27) 10.95 (5.95)/

Table 1. Accuracy and latency in experiments 1–4, based on our Original UI (? p < : 01, � � � � / p < : 001).

template set Animated Video
# test set# accuracy (� ) time [s] (� ) accuracy (� ) time [s] (� )

Original UI
3 Complete .91 (.29)? 4.14 (1.95)� .88 (.33)� 8.31 (4.86)/
4 Animated .93 (.26) 5.89 (2.41)� .92 (.27)� 10.95 (5.95).

1 vs. 1 UI
5 Complete .98 (.13)? 2.22 (0.92)� .98 (.13)� 3.38 (1.05)/
6 Animated .91 (.29) 2.97 (1.37)� .97 (.16)� 4.01 (1.69).

Table 2. Accuracy and latency in experiments 3–6, based on our Original UI and the 1 vs. 1 UI (� p < : 01, ? � � � / . p < : 001).

the use of the latter when the designed gesture set is not solely
comprised of static gestures.

THE GESTUREWIZ PROTOTYPING ENVIRONMENT
The GestureWiz prototyping environment consists of three
main components: aRequester UIfor recording gestures and
con�ict checking; theWorker UIs (Original and 1 vs. 1) for
recognizing recorded gestures using crowds or a WOZ; and
theGestureWiz library to be used in applications that shall
be enhanced with gesture recognition capabilities.

The GestureWiz work�ow for a designer to de�ne and test a
gesture set and their own application prototype is as follows:

(a) First, they can use the Requester UI inrecord mode and
capture a set of template gestures using one or more types
of input, then save them.

(b) In the next step—potentially consisting of several
iterations—the gesture set can be tested using the built-in
con�ict checkerto resolve ambiguities and adjust the de-
sign of the gestures.

(c) Subsequently, after extending the (optional) application
prototype to be controlled with the gestures with the Ges-
tureWiz library, arbitrary commands within the application
can be mapped to any of the de�ned gestures.

(d) Finally, test gestures can be streamed for recognition by
crowd workers or a WOZ who compare them to the pre-
viously saved templates, using any of the two available
Worker UIs. Streaming happens either through the Re-
quester UI'srecognitionmode or a custom solution based
on the GestureWiz library. As soon as a gesture is recog-
nized, the corresponding command will be executed in the
application based on an asynchronous callback.

In the following, we explain our environment in more detail
along the lines of this work�ow.

(a) Recording Gesture Sets using Multiple Inputs
GestureWiz's Requester UI (Fig. 3) supports recording ges-
tures using a range of different input modalities. Currently,

mouse, pen, and multitouch strokes, as well as Kinect body
stream, Leap Motion, and video are supported (Fig. 3d). Due
to the �exible design of the prototyping environment, this can
be easily extended to new inputs. To do so, GestureWiz sup-
ports stream capture of anything drawn on an HTML5 canvas
element (Fig. 3b), from which it then automatically generates
video sequences that function as gesture templates.

Supplying Alternative Gesture Templates
New gesture templates immediately appear in the Requester
UI (Fig. 3f), allowing users to preview them in the way crowd
workers would see them in recognition mode. Templates the
designer is not satis�ed with can be easily discarded using
the red minus button. This allows users to batch record sev-
eral templates of the same gesture, compare them visually in
the Requester UI or using the con�ict checker, and keep the
template that best represents the intended gesture. Gesture
sets can be stored under a user-supplied name and reloaded,
allowing gesture recording in multiple independent sessions
and experimentation with different gesture sets.

Dealing with Gesture Representation Problems
Note that it is possible to produce multimodal gesture sets by
recording gestures using different inputs as part of the same
template set. This can be used to supply templates of differ-
ent types of gestures, e.g., surface vs. mid-air gestures, if the
application is to support multiple input modalities. However,
this can also be used to supply templates of thesamegesture
type in different representations, e.g., Kinect body vs. camera
video sequences, for mid-air 3D gestures. This supports ex-
perimentation if it is not clear which representations are the
fastest to be recognized and matched by crowd workers.

Dealing with Gesture Segmentation Problems
Note that in record mode, stream capture for gesture record-
ing is manually controlled by the user via the space bar or
start/stop button. This not only allows for segmentation of
continuous interaction streams supplied by Kinects and cam-
eras, but also for recording gestures consisting of multiple
mouse, pen, or touch strokes. Recognition mode, however,
can work on a live stream. Crowds or WOZ simply select a
template as soon as they recognize a gesture in the stream.



Figure 3. GestureWiz's requester and worker UIs: (a) recognized gesture, time taken, and number of workers,(b) input canvas (here showing camera
video),(c) mode switch to record/recognize gestures,(d) input modality, (e)MTurk con�guration, (f)+(g) gesture templates,(h) requester live video, and
(i) integrated con�ict checker (3 X's maximum).

(b) Resolving Ambiguities Using Con�ict Checking
The integrated con�ict checker automatically posts pair-wise
comparisons of all non-identical gestures in the template set
to MTurk, i.e.,N (N � 1) comparisons forN gestures. Cur-
rently, each comparison(A; B ) is assigned to three crowd
workers. If gestureA is incorrectly recognized as match-
ing gestureB , the pair of gestures is marked as ambiguous
(Fig. 3i). This provides valuable early-stage feedback and
supports rapid prototyping of less ambiguous gesture sets.

(c) Making Use of the GestureWiz Library
The optional end-user library included in our framework pro-
vides two tools. First, a method to set up a custom solution
for gesture streaming rather than relying on the requester in-
terface's recognition mode, and second, a means to receive
gesture detection events in an application and invoke com-
mands accordingly. Both tools have been designed for min-
imal con�guration effort and can be set up with a minimal
amount of code.

(d) Streaming Gestures in Nearly Real-Time
When the user activates the Requester UI'srecognitionmode
and records a gesture, it is automatically streamed to the

Worker UI (Fig. 3h) rather than being added to the template
set. In the Worker UI, crowd workers or a WOZ compare
the incoming test gesture to the designer's previously de�ned
template set in case of the Original UI (Fig. 3g), or to just one
of the template gestures in case of the 1 vs. 1 UI. When the
recording is completed, the Worker UI automatically replaces
the stream with a repeating video sequence of the test gesture.
In this way, a worker can observe the gesture already while
it is being articulated. If a worker enters after the stream was
closed, they are instead presented with the repeating video
sequence. This combination of live streaming and substitu-
tion with a repeating video yields the best chance of a fast
worker response. The reason for this is that crowd workers
have shown to be good at recognizing incomplete gestures
and therefore might correctly identify the gesture even before
it is completed by the requester.

To motivate good worker performance, the Worker UIs follow
a gami�cation approach. In the instructions, workers are in-
formed that they are competing against other workers to pro-
voke quick responses. This is realized by removing the test
gesture from the Worker UI as soon as an answer has been de-
livered to the requester and thereby “taking away” the gesture
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