XRDirector: A Role-Based Collaborative
Immersive Authoring System

Michael Nebeling, Katy Lewis, Yu-Cheng Chang, Lihan Zhu,
Michelle Chung, Piaoyang Wang, Janet Nebeling
University of Michigan School of Information
nebeling @umich.edu — https://mi2lab.com

ABSTRACT

Immersive authoring is an increasingly popular technique to
design AR/VR scenes because design and testing can be done
concurrently. Most existing systems, however, are single-user
and limited to either AR or VR, thus constrained in the in-
teraction techniques. We present XRDirector, a role-based
collaborative immersive authoring system that enables design-
ers to freely express interactions using AR and VR devices
as puppets to manipulate virtual objects in 3D physical space.
In XRDirector, we adapt roles known from filmmaking to
structure the authoring process and help coordinate multiple
designers in immersive authoring tasks. We study how novice
AR/VR creators can take advantage of the roles and modes
in XRDirector to prototype complex scenes with animated
3D characters, light effects, and camera movements, and also
simulate interactive system behavior in a Wizard of Oz style.
XRDirector’s design was informed by case studies around
complex 3D movie scenes and AR/VR games, as well as work-
shops with novice AR/VR creators. We show that XRDirector
makes it easier and faster to create AR/VR scenes without
the need for coding, characterize the issues in coordinating
designers between AR and VR, and identify the strengths and
weaknesses of each role and mode to mitigate the issues.

Author Keywords
AR/VR; immersive authoring; mixed-reality collaboration.

CCS Concepts
*Human-centered computing — Mixed / augmented real-
ity; Collaborative interaction;

INTRODUCTION

Immersive authoring enables asset creation and programming
of interactive behavior from within the virtual environment
[20]. It is a technique that allows verifying user perception of
AR/VR content and interaction usability in situ [14, 35]. Many
key vendors have an immersive authoring system (Google Tilt
Brush, Oculus Quill, Microsoft Maquette, Disney’s PoseVR,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CHI’20, April 25-30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. .. $15.00

DOL: https://doi.org/10.1145/3313831.3376637

Actor VR) \ - f, \ . Camera (AR)

Figure 1. XRDirector enables designers in different roles using mixed-
reality devices to jointly enact prototypes using AR/VR interactions. In
our recreation of the Lion King (2019) teaser, the director instructed an
actor playing the Rafiki character to move up Pride Rock in VR and a
designer controlling the camera to focus on Rafiki in AR.

etc.). While they are becoming increasingly powerful and
popular (e.g., Google’s artist in residence program), they all
are designed for single-user usage and typically attempt to
move the entire authoring system into either AR or VR.

The goal of our work is to study the issues in enabling multiple
designers to collaborate in immersive authoring tasks, taking
advantage of both AR and VR where appropriate. XRDirector
targets co-located settings in which multiple designers col-
laborate at the same time and in the same place [11], which
provides many new challenges. Prior work addressed time-
based and, to a lesser extent, spatial coordination issues, but
only considered scenarios where the entire team uses AR [3,
18, 9, 16] or only one user is in VR [4, 6]. Our work identifies
new, interesting issues as some designers work in VR and
others in AR. We group these issues into four main categories:
spatial awareness, constraints, mappings, and resolutions.

To study these issues, we present XRDirector, a multi-user,
cross-device, immersive authoring system (Figure 1). XRDi-
rector demonstrates a role-based collaborative authoring ap-
proach that adapts roles known from filmmaking to structure
authoring tasks and help coordinate multiple designers. It
is through the roles combined with specific AR/VR modes
adapting view and behavior that we are able to address most
coordination issues in XRDirector. We aimed to give each role
in XRDirector autonomy in control and movement over certain
elements of a scene, but limited the number of aspects each
individual user needs to pay attention to while increasing the
need for collaboration. Traditional filmmaking is focused on
executing the director’s vision, involving coordination of all
moving parts, instruction to everyone on set, and verification

https://mi2lab.com
https://doi.org/10.1145/3313831.3376637

of all takes. Since the director is crucial to the production’s
success, we developed a special role with full control over
a scene, including placement and movement of 3D charac-
ters, lights, and the camera, even while being embodied and
controlled by other designers in our XRDirector system.

XRDirector was designed to study how novice AR/VR creators
can be empowered to create complex scenes, with multiple
animated 3D characters, light effects, and camera movements,
and to simulate interactive behavior in a Wizard of Oz style.
Our primary contribution is a set of immersive authoring tech-
niques adapted from filmmaking, as well as showing how they
can be leveraged to structure collaborative authoring. We also
see value in XRDirector as a system for early-stage design
explorations, particularly when there is no animation script or
interaction design concept yet, but it is not meant to substitute
for more advanced AR/VR tools [28]. XRDirector incorpo-
rates principles from layered 3D character animation [8] and
3D puppetry [1, 2, 15], but we take the crucial next step of
extending it to collaborative authoring in mixed reality [33].

We report on our design process around XRDirector in three
steps. First, we conducted three case studies around com-
plex 3D movie scenes and AR/VR games, initially recreating
them using low-fi prototyping without technical constraints,
then using digital tools and scripting, to better understand
requirements and inform the design of XRDirector. Second,
we conducted workshops with novice AR/VR developers, dis-
cussing their major challenges with existing tools, exploring
the potential and limitations of XRDirector when using it to
recreate selected scenes. Third, we characterized the issues
when reenacting the prototype scenes from our case studies us-
ing XRDirector, and explored additional applications to assess
its expressive power and flexibility.

BACKGROUND
XRDirector adds to prior AR/VR prototyping and Wizard of
Oz tools, and performance animation and puppetry interfaces.

AR/VR Prototyping and Wizard of Oz Tools

Early immersive authoring tools allowing designers to create
AR/VR content directly in AR/VR were inspirational to our
work (e.g., [14, 20, 35]. Our work also shares goals with
Studierstube [31] and DART [24, 13], with initial support
for collaboration and Wizard of Oz based on record & re-
play of sensor data [9, 10]. More recent tools like ARcadia
[17], ProtoAR [27], and 360proto [26] focus on creating map-
pings between physical artifacts and digital representations for
AR/VR—ARcadia adapts a block-based scripting language
for AR and allows markers to function as input and control;
ProtoAR generates mobile screens with embedded AR scenes
from paper sketches and Play-Doh models; 360proto turns
paper sketches themselves into 360-degree representations of
AR/VR environments. XRDirector is a continuation of these
tools: it captures physical movement and translates it into 3D
animations of virtual objects during immersive authoring.

Performance Animation and Puppetry Interfaces
We think of XRDirector as an extension of earlier performance
animation tools. Dontcheva et al. [8] used a multi-camera

motion capture system to track an actor for 3D character an-
imation. Video and 3D puppetry [2, 15] are camera-based
systems tracking paper cut-outs and physical objects moved
by a puppeteer for 3D animation. Cellphone Puppets [29]
and PuppetPhone [1] directly turned AR phones into puppets.
XRDirector extends these techniques to multi-user collabora-
tion scenarios. While we can leverage inside-out tracking of
devices without building special-purpose pipelines, our main
issue becomes coordinating multiple designers in AR/VR.

This was previously shown to require careful timing and exten-
sive training [16, 18]. Haptic Turk used preemptive warnings
[4] and Turk Deck [6] a scheduler with delay mechanism to
leverage humans as actuators to create a realistic, immersive
experience. These systems required additional devices such as
iPads and a projector for coordination displays. Without turn-
taking techniques [5] they are limited to one VR player. With
XRDirector, we present a role-based framework for coordi-
nating co-located teams of designers in mixed reality, without
extensive instrumentation or additional displays.

Other related systems include GestureWiz [34] and Montage
[22]. GestureWiz uses human wizards to simulate gesture-
based interfaces. Montage provides a comprehensive video
prototyping suite to simulate interactive systems with sup-
port for AR. We developed XRDirector in the same spirit, but
wanted to produce system output beyond videos so that the
resulting prototypes do not just live or die with the prototyping
tool. We share the goals of sketch-based animation tools, K-
Sketch [7], Apparition [19], and SketchExpress [21], in that we
also want to generate complex animations from simple demon-
strations. We present a solution to generate 3D animations and
interactive behavior from demonstrated AR/VR interactions
in XRDirector. Similar to [8, 23], XRDirector implements
post-production tools to transform tracking data along both the
time and space dimensions. Unlike prior work, we study how
these techniques can be used to overcome spatial coordination
challenges when coordinating multiple designers.

WORKSHOPS WITH NOVICE AR/VR DEVELOPERS

In the following, we describe our process of learning about
requirements for new tools like XRDirector. In a first step,
we wanted to gather feedback from novice AR/VR developers
regarding their experience with existing tools and challenges
they commonly faced when creating AR/VR prototypes. In
a second step, we carried out three case studies recreating
existing 3D movie and AR/VR games scenes.

Structure. We recruited 12 master’s students (10 females, 2
males, with a median age of 25) from an AR/VR development
course with a median of 3 months experience working with
A-Frame and Unity. We started the workshops by asking the
students to present a challenging AR or VR scene they had
developed. We asked each student to walk us through key
features of their scene and explain the major challenges they
had creating the scene. After all students had stated their
challenges, we asked them each to pick one main challenge.

Findings. In total, we saw a good mix of AR/VR scenes. To
create these scenes, 7 students used A-Frame and 5 students
used Unity. Each of the scenes presented had an average

of 2-3 different types of animations (scripted 3D character
motions, light effects, camera movements, particle systems).
Overall, students found difficulty with animating objects in
their scenes in a natural way. In particular, they found it
tedious to create lots of concurrent animations and hard to
do this efficiently. In this same vein, they found it difficult
to apply unique motions to objects, as this required manually
coding each individual movement. While some issues may
be resolved with more experience in AR/VR programming or
using additional animation tools, our students are not the first
to report such issues and to see them as major barriers [2, 15].

CASE STUDIES

We conducted three case studies around complex 3D movie
scenes and AR/VR games, each involving two rounds of pro-
totyping: /) physical prototyping with no technical consider-
ations, 2) digital prototyping in existing tools to create and
experience a prototype on AR/VR devices. We used common
tools for 3D modeling and immersive authoring (Blender and
Google Blocks) and AR/VR platforms (A-Frame and Unity).

Case Study 1: Lion King (2019) Teaser

As our first case study, we recreated elements from the first
teaser trailer of the Lion King (2019) remake. We selected it
because of its high quality animations. It was also an interest-
ing case because filming was done completely in VR [12].

Physical Prototype

Figure 2. Physical prototype based on Lion King teaser to understand
requirements for camera and 3D character movements.

Figure 2 shows a collage of different elements we recreated
using paper prototyping in combination with Play-Doh based
on the methods presented in [27]. From the physical prototype,
we learned how a variety of different camera angles and move-
ments can come together in a scene, from a far away view of
Pride Rock, to close-ups of Simba (Figure 2a and c). We also
learned how differently detailed models were required for the
same 3D character to accomplish different types of motions.
For example, in one scene, Rafiki moves from climbing up a
rock to breaking a vine over his head with his arms (Figure 2b
and d). It was easier to create two models for those visuals
than to try to contort one model into both positions.

Digital Prototype

Figure 3. Digital Lion King recreation with 3D models created in Blocks
and Blender as well as scripted animations in A-Frame and Unity.

While creating the digital prototype of the Lion King scenes,
we noticed the complexity in terms of 3D character animation,
camera movements, and scene transitions (Figure 3). While

we were able to replicate most camera movements and com-
positions with reasonable accuracy, our scenes did not match
the quality of the original trailer. To achieve higher fidelity,
our prototype would need to have much more detailed models,
with hair, fur and movable joints, which would have required
many weeks of model sculpting, rigging, and animation in
several 3D tools. Using our selected tools to create the scenes
was tedious, as moving and placing objects as well as scripting
object movements required a lot of trial and error.

Case Study 2: Beat Saber

Figure 4. Physical and digital recreations of Beat Saber to study require-
ments for rapid object movement, lighting, and sound in VR.

Our second case study was a recreation of the VR game, Beat
Saber (Figure 4). In the game, blocks move towards the player
who swings the sabers to slash the blocks in half. We chose
this case because of its relative popularity and the rapid object
movements coordinated with light and sound effects.

Physical Prototype

Even though the video game displays a seemingly simple
interface with straightforward interactions, it was challenging
to recreate the steady and measured movements of the game
blocks. In the physical prototype, we were able to reproduce
all of the scene elements but compromised on the flashing
background lights. Cutting the block in half was also difficult
to simulate, requiring coordinated movement between the
player and two puppeteers, each holding a piece in both hands.

Digital Prototype

With our digital prototype of Beat Saber, we found that adjust-
ing the light to match the beat of the music required a lot of
manual scripting and tuning of animation timings. Though we
simplified the background and some effects from the original,
such as the cubes not splitting in half, we were able to recreate
the basic game mechanics with few challenges in A-Frame.

Case Study 3: ARcade Plane

Figure 5. Recreations of ARcade Plane to learn about requirements for
3D character movement, directional light, and shadows in AR.

The third case study was a replication of the AR game, ARcade
Plane (Figure 5). In the game, the user is given a task to
navigate a plane around objects in a digital town. The plane is
controlled by moving and tilting the phone, a common set of
mobile AR interactions, which is why we chose this case.

Viewing Scene

Authoring Scene

Post-Processing

- Generate Scale Layer
Functions /| View View 3D View | View Control 3D Animati Animation | Animati
Roles Avatars Characters |Lights | Camera | Characters Script Trajectory | Sequences
Director X X X X X X X X X X X X X
Actors X X [¢] X X o [¢] o o
Lights X X X X X o [©) [¢] o
Camera X X [¢] X X X X X (¢] (¢]
Viewer X [¢] o o o o
Figure 6. Roles and functions in XRDirector: X = role can execute function; O = role sees result of function; — = role does not support function.

Physical Prototype

We created the 2D HUD using transparency and 3D characters
out of paper and Play-Doh, replicating most aspects of the
original game but not including sound. One puppeteer moved
the plane model and also used their phone’s flashlight for
lighting. Close coordination between the puppeteer and the
player was required, since the puppeteer needed to guess the
player’s intended actions. This required verbal communication
and a shared sense of the anticipated end result.

Digital Prototype

Our digital prototype focused on the 3D characters from the
original game—replicating the 2D HUD was secondary. For
the plane and light movements, each motion step needed to
be scripted in terms of position and rotation changes, which
required many lines of code for only a small set of movements.

REQUIREMENTS
From these case studies, we identified three main requirements
that we wanted to address with XRDirector:

R1: Flexible workflows for prototyping 3D animations
Physical prototyping was easy and highly iterative. After a
first recording was taken, missing parts could be added, ex-
isting ones remolded, and the scene shot again until satisfied.
On the other hand, if only some elements of an animation did
not feel right, typically the entire animation had to be recre-
ated, causing another iteration. Digital prototyping required
careful planning and felt much more constrained. 3D anima-
tion required a lot more effort and was tedious with scripting.
Recording was typically delayed until all scene elements were
in place. In XRDirector, we aimed to enable flexible work-
flows similar to physical prototyping, by allowing animations
to be demonstrated without scripting, layered to support itera-
tions, and modified to make corrections post-hoc.

R2: Joint control over multiple moving parts

Physical prototyping afforded creative use of additional ma-
terials to make physical props stick and move with a person
or other objects. We felt that we achieved better results the
more control we could exercise over the object, which was
hard for particularly small or large objects. Often it was best to
take objects apart and allow individual parts to be controlled
by more than one person or using additional people to fix
parts that should not be moving. We used the same strategy
in digital prototyping though it was more tedious to produce
complex animations from multiple moving parts via scripting.
In XRDirector, we wanted to enable designers to jointly cre-
ate complex scenes by embodying multiple 3D characters or
assisting with detailed animations of the same character.

R3: Clearly established roles to facilitate collaboration
Physical prototyping made it easy to lend each other a hand
and help with filming while 3D characters were being ani-
mated in front of the camera. While roles stayed mostly the
same, the camera operator often also worked as director by
quickly adding or removing elements from the scene. Col-
laboration on digital prototypes was much more difficult to
coordinate despite using online editors such as CodePen and
Glitch with state-of-the-art collaboration tools. In XRDirector,
we wanted to facilitate collaboration between designers by
establishing clearly defined roles. Initially, we only distin-
guished between the director and puppeteer roles, but after our
case studies, we strongly felt the need for a separation of roles
into actors, lights, and the camera, giving full control over all
scene elements only to a user in the director role.

XRDIRECTOR

At the highest level, XRDirector distinguishes two main con-
cepts: roles and modes. Roles are assigned to users and deter-
mine what types of virtual objects in the scene users can view
and manipulate. Modes are assigned to devices and determine
how users view and author the scene.

Roles
We developed five roles in XRDirector (Figure 6):

e actors animate 3D characters and produce spatial sound;
e lights control lighting of the scene to create basic effects;
e camera records 3D character animations and light effects;

e director orchestrates actors, lights, and the camera via ver-
bal instructions, or takes direct control over them (e.g., to
move them and demonstrate a performance);

e viewers can see the live performance or watch a recording.

As shown in Figure 6, the director has full control over the
entire system, while other roles only have access to a subset
of the system functions. This effectively enables usage by a
single designer in the role of director or focusing on the par-
ticular requirements of 3D character animation, light effects,
and camera transitions when multiple designers are involved.

We designed our role-based framework that way to reduce the
perceived complexity, hence the learning curve, of our system,
and enhance collaboration, hoping that it would help distribute
the work between designers and make it easier for the director
to instruct designers on a per-role basis. While roles other than
the director have specific, fixed functions, switching roles only
requires changing a parameter in XRDirector. This enables
quick transition to other roles in our collaboration framework.

Reposition
Function

Recenter
Function

B)

Record &
Replay
_ Functions |

Figure 7. Recreation of the Lion King Teaser in XRDirector showing the views of four designers in different roles side-by-side: actor, light, camera,
director (all represented by avatars): a) the actor moves the Rafiki character up Pride Rock; b) the light dims the ambient light to crossfade between
scenes; ¢) the camera zooms and keeps Rafiki in view; and d) the director oversees the scene, instructs the actor, light, and camera, and functions as
their common reference point. Widgets (in gray) floating over the scene can be used to edit selected virtual objects and perform role-specific functions.

To facilitate coordination in embodied mixed reality [32, 33],
all roles are represented by virtual avatars (Figure 7b). The
camera is a fixed 3D model with an enlarged lens; other roles
are color-coded heads with enlarged eyeballs. The lens and
eyes show orientation and indicate each role’s perspective on
the scene. When actors and lights select a 3D character or
light source in the scene, their avatars are hidden such that
they effectively become the selected virtual object.

Viewers only see the 3D characters and light sources, not the
actors’ virtual avatars. This makes for a clean viewer experi-
ence, gives the illusion of a “working prototype” in Wizard
of Oz applications of XRDirector, and addresses a limitation
of previous works that struggled to remove the puppeteer or
wizard from viewers [2, 26]. Multiple viewers are possible
and share the view of the camera, as in the movies, or move
freely in the scene, making it interactive.

The camera and director roles have access to a special scale
function to resize all virtual objects at once while keeping
their position and size in the scene fixed. We added this
feature to better align the virtual world with the physical world
and space available to designers to express interactions. Note
that this scale function does not take effect for viewers who
always view the scene at true scale. We will later demonstrate
the importance of this function for spatial coordination with
multiple designers using XRDirector in different modes.

Modes
We also developed three modes in XRDirector:

e Plain 3D mode: the user views a perspective rendering of
the scene on a computer screen and transforms the view and
a selected object by using WASD keys and dragging the
mouse similar to FPS games. It is the basis of other modes.

e AR mode: the user views the scene as magic window with
skybox or rear camera feed on a hand-held or head-worn
AR device and transforms the camera perspective and a
selected object by moving the device in physical space.

e VR mode: the user views a stereoscopic rendering of the
scene on a VR headset and transforms the view and a se-
lected object by moving the headset in physical space.

Plain 3D is similar to common 3D digital authoring tools,
while AR/VR modes enable immersive authoring.

For the VR mode, we added an option to attach the selected ob-
ject to the controller to move it separately from the designer’s
view of the scene. We did this to match the flexibility of the
AR mode supporting hand-held and head-worn devices. It was
also motivated by our case studies where we varied the body
parts to better fit requirements of natural movements.

In addition to a teleport function common to many AR/VR
applications for travelling virtual distance without moving
physically, each mode implements two functions to deal with
calibration and locomotion differences between modes: a re-
center function moves the virtual world so that it is centered
on the designer’s virtual position independent of their physi-
cal location; a reposition function moves the selected object
relative to the designer’s virtual position or relative to the VR
controller’s position if that option is selected.

The first function allows a designer to realign the virtual world
around their position in physical space. This enables calibra-
tion with collaborators without having to restart the system
and also helps recover from AR/VR tracking issues, which
still frequently occur with inside-out tracked devices.

The second function allows a designer to keep the virtual
object in view while they are manipulating it as they would
otherwise occupy the same virtual space as the object they are
controlling. This can be crucial for a designer when getting
familiar with a new role. Seeing the character movement in
third person can also enhance feedback and feel of control.

USING XRDIRECTOR

Figure 7 shows our Lion King recreation detailed later with
one designer controlling lighting in AR mode to lit the scene,
a second designer moving the camera in AR mode to keep
Rafiki in frame, a third controlling the Rafiki character in VR
mode, and the director coordinating all three in the plain 3D
mode. Note that changes made to the scene by one designer
are immediately propagated to designers on other devices.

Lights, Camera, Action!

Below we walk through the experience of using XRDirector
to prototype scenes from our Lion King case study. While we
keep the examples relatively simple, the scenes have sufficient
complexity to demonstrate key aspects of XRDirector.

Controlling Lights

A key aspect when authoring 3D scenes is lighting. The light
role is responsible for more than just controlling basic inten-
sity, contrast, or color parameters. Lights are interactive and
can create different effects, from controlling global illumina-
tion for fade and dim effects, to partial illumination casting
shadows, to color toning and shading individual objects. Such
effects can be created via an intensity slider and color picker.
Figure 8 shows the first AR designer embodying ambient light
to increase brightness and fade in the Lion King opening scene.

Figure 8. Light increases the brightness in Lion King’s opening scene.

Controlling the Camera

XRDirector supports natural camera movements known from
filmmaking: pan by rotating the device while keeping the
position fixed to change the orientation; dolly by moving the
device to change the position in the virtual world in the AR/VR
modes; and zoom by moving a slider to magnify the scene
without changing the camera position. Figure 9 shows the sec-
ond AR designer in the camera role moving the camera (here,
the AR capable phone) to zoom in on the Rafiki character.

Figure 9. Camera moves forward (dolly-in) to zoom on Rafiki in AR.
Controlling 3D Characters
Similar to lights and the camera, designers in the actor role
can control 3D characters by using XRDirector to translate

AR/VR device motions in physical space to object motions in
virtual space. Because AR/VR device can be tracked along six
degrees-of-freedom at fairly high precision, this gives design-
ers full control over character animation and allows them to
freely express interactions. The character’s appearance can be
changed using widgets for the 3D model, color, size, opacity,
and visibility. Figure 10 shows the third designer in the actor
role controlling the Rafiki character to simulate walking up
Pride Rock.

12
Actor (\’r‘q/) Camera (AR) 4 ;

St 10

Figure 10. Actor moves up Pride Rock in VR while camera moves back-
ward (dolly-out) in AR mode to keep the zoom on Rafiki the same.

Rescaling the Virtual World

Figure 10 also shows the second designer moving the cam-
era to keep the zoom on the Rafiki character the same during
movement. This requires both time-based and spatial coordi-
nation between VR actor and the AR camera. In this paper,
we focus primarily on spatial coordination between AR/VR
designers and aim to show that the director role is vital to
address these issues. Figure 10 is representative of two of
the issues we will detail later: spatial constraints and spatial
mappings. One of the special functions the director has is the
rescale function. Figure 11 shows the director temporarily
reducing the scale of the virtual world such that the designer’s
physical movements translate to larger object movements in
the scene. Additionally, the AR actor could choose a different
starting position for the camera and recenter the virtual world.
This would lead to different virtual-physical spatial mappings
between the AR and VR actors. As a result, the AR camera
would see the VR actor at a different virtual position than
where they are in physical space, but this would make better
use of limited physical space and avoid collisions.

Figure 11. Rescaling the scene to make do with limited physical space.

Record & Replay of Object Manipulations

Since changes made to any virtual object take immediate effect
in the scene, the same tools used for authoring can be used for
performance animation and Wizard of Oz.

Recording performances

Designers in the camera or director roles have access to XRDi-
rector’s record & replay functions to create animations and ef-
fects (Figure 7c and d). When recording is initiated, XRDirec-
tor captures the states of the 3D characters, lights, and cameras

in terms of their position, rotation, and size. Recorded object
trajectories are visualized via motion paths (Figure 7c). Our
implementation also keeps track of a set of pre-specified com-
ponents (material color and opacity, light color and intensity,
and camera zoom, per default) in real-time. After recording
these initial states, XRDirector continuously tracks changes to
these properties and builds a timeline of events. This makes
it possible to record natural 3D character movements, cross-
fading light effects, changing brightness or color, and camera
transitions. Similar to Dontcheva et al. [8], our record method
allows iterative, overlapping recordings in which additional
properties can be modulated along a shared timeline. This
enables detailed and concurrent animations of more than one
object even by a single designer in the director role.

Synchronized playback across devices

XRDirector also features a replay tool that reproduces the
recorded animation steps and synchronizes them with other
devices. To do this, our replay tool first hides all current
puppets in the scene for all clients, then spawns ghost actors
controlled by the system for each of the recorded puppets that
recreate the recorded states in real-time. The actual animation
script therefore only needs to be invoked for the designer in the
camera/director role, while the ghost actors ensure state-based
client synchronization. This networked replay approach is
lightweight and happens in real-time (avoiding transfer of the
entire animation script with all its properties). It also allows
other clients to join a session even during record & replay and
still be in sync with all other clients.

Post-processing of Recorded Animations

To enable the director to adjust recorded animations post-hoc,
we developed two additional interfaces to scale movement
trajectories and animation timelines.

Rescaling movement trajectories

We implemented a proof-of-concept interface for adjusting
trajectories using input fields to modify the scale along x, y,
and z dimensions independently. Figure 12 shows an example
where we downscaled the recorded trajectory for the Rafiki
character to better match the scale of our Pride Rock 3D
model and reproduce the movement from the Lion King teaser.
Our algorithm determines the geometric center as the point
around which the animation will be rescaled, then applies
vector transformations for all recorded trajectory points.

scale = (1,1,1)

Figure 12. Downscaling the recorded trajectory of the Rafiki character.
Layering animation timelines

We also implemented a interface for freely adjusting the timing
of animations recorded for one or more objects. The direc-
tor can adjust the start and end times of each animation by
dragging the handles and uncheck animations to disable them.
This adjusts the delay and duration property of the correspond-
ing A-Frame animation component. The interface therefore

allows to correct animations created by multiple designers
where timing was not right or to try out and toggle alternative
animations. It also enables more complex animations based on
multiple separate demonstrations of even a single designer to
be layered [8]. Figure 13 shows our proof-of-concept layering
of two animation sequences for the Rafiki character.

Layering
move1 & rotate1
| IStart OverRi s

Start Over iyt3g

a light1: colorChange1 4 lightt: colorChange1
o rafiki: move1 o rafiki: move1
g ki rotate1 b ik rotate1

Figure 13. Layering move & rotate animation sequences of Rafiki.

IMPLEMENTATION

XRDirector is implemented using the web-based A-Frame XR
development platform originally created by Mozilla. While
A-Frame XR supports a rapidly growing range of mixed-
reality devices, we have successfully tested the system on
Android phones with ARCore on Google’s WebARonARCore
browser, Windows Mixed Reality with SteamVR on Firefox,
and HoloLens on Edge. A new AR/VR device can start or
join an existing prototyping session simply by navigating to a
shared URL in a WebXR capable browser. Real-time synchro-
nization between multiple users and devices is implemented
using Networked A-Frame based on the WebRTC standard
using the easyrtc library. Our record & replay tools are im-
plemented using the A-Frame animation component which is
based on the anime.js animation engine.

FINAL WORKSHOPS WITH XRDIRECTOR

As a formative evaluation of our system, we conducted follow-
up workshops with the same 12 students we previously re-
cruited, asking them to use XRDirector to recreate scenes they
found challenging to build in A-Frame and Unity.

Method

We asked participants to create four teams of three each. From
the 12 scenes discussed in the initial workshops, we selected
four with at least 2-3 animated 3D characters, light effects
and camera movements, then assigned the director role to the
original creator of each selected scene and assigned actor roles
to the remaining two team members. After a brief introduc-
tion to our system, teams were given 90 minutes to practice
their roles and recreate the 2-3 animations with XRDirec-
tor. We set up three work stations running XRDirector per
team, one station with a 48” screen, one with a Windows
Mixed Reality VR headset and controllers, and one with an
ARCore enabled smartphone. Each team also had a neutral
observer from the research team that recorded prototyping
activity and answered technical questions. Teams stayed the
same and worked separately but came together in a discussion
round. Finally, participants filled in a feedback questionnaire
on strengths and weaknesses of XRDirector,and received a
$20 gift card as compensation for their time.

Results
Below, we present our analysis of participant feedback and
observer notes using thematic coding.

Actor (\}R) /r'

Rafiki ¢

Same
Mappings &

s
Actor (VR)

Actor (VR) Simba’s head

Simba’s hea
| Actor (VR) |
_ 4 Simba’s body
=1

3a |_Mappings 3b

Ector (AR)

|
Actor (VR)

&7 Actor (VR

C:;%:b RELETS

Different
gs

Viewer (VR)
Sabers

Director (AR)|™
Plane

Figure 14. Final case studies with XRDirector: (1a) spatial coordination between VR actor and AR camera was hard due to the same mappings re-
sulting in physical constraints; (1b) director kept the mappings but demonstrated how to optimize camera movement with limited physical space; (2a)
spatial coordination between VR actor and VR viewer was hard due to different mappings and virtual references given by director not matching the
physical world (“move towards [the VR viewer]”); (2b) director kept the mappings but moved the VR actor to a matching physical location and used
universal references (“move back and forth); (3a) spatial coordination was hard for two VR actors who wanted to coordinate small movements of a
character’s head and body due to low resolution of the scene, resulting in jitter and uncontrolled motions of the tiny character parts; (3b) director up-
scaled the scene, which relaxed character movement, and demonstrated how to coordinate motions between the VR actors given the different mappings;
(4a) spatial coordination between AR actor and AR viewer was hard due to low resolution resulting from the downscaled scene to use the same mappings,
which limited character movement; (4b) director demonstrated how to pronounce physical motion to increase the realism of character movement.

Animation without coding is a strong benefit

In the initial workshops, the participants expressed difficulty
creating sequential animations through scripting. They rated
the experience using XRDirector to create animations as being
easy and helpful, especially for AR actors: “Easy to create ani-
mation curves.” “It is really helpful for prototyping animation.”
“No need to write code! That is nice!” The ability to watch the
replay synchronized on all devices was also highlighted: “The
animation replication feature is super cool.”

Flexible tool for collaboration in mixed reality

While we observed an initial learning curve, participants had
no trouble understanding their roles: “Users can easily under-
stand the role and start testing this system.” The role of the
director was critical to the success of the collaboration activity.
They guided the actors to complete their tasks through hand
gestures, verbal directions, and physically moving the actors
into position. When directors did not give sufficient directions,
actors would look at other actors and the director’s screen to
orient themselves in the scene. Complex coordination between
actors was still difficult to achieve, especially when one actor
was in VR and the other in AR. Because participants started
from scratch and recreated the 3D characters, the actors did
not have any landmarks, making coordination harder [25].

All roles are important

Having the director change perspective and take control of
actor actions solved confusion in several cases. For example,
when the actors had difficulty scaling their 3D character or
knowing when their avatar was dressed with the selected ob-
ject, the director stepped in. In one team, the director flew
above the actors to gain a greater perspective on the scene and
provide more accurate verbal directions for the actors. For
the actors, however, this strategy introduced new coordina-
tion challenges because the director’s avatar was not in their

field of view anymore. This showed us the importance of the
camera as common reference point for actors.

FINAL CASE STUDIES WITH XRDIRECTOR
In this section, we revisit our three case studies and report on
our experiences recreating them with XRDirector.

We selected a total of six scenes from our three case studies.
One of the authors assumed the director role and briefly recre-
ated every scene with a special producer mode of XRDirector
simulating up to four roles on the same device side-by-side
(cf. Figure 7). This allowed him to develop a plan for instruct-
ing the roles and suggest modes when the research team came
together for the reenactments summarized below. While we
had access to more devices, we ended up needing two VR
setups, two AR phones, and one large screen for the director.
We recorded our final case studies for video analysis.

Figure 14 shows examples from our recreated scenes and
illustrates common challenges. We start by analyzing the
required effort, then discuss common challenges and how
we addressed them using XRDirector, and conclude with a
comparison of the strengths and weaknesses we noticed with
different role/mode combinations.

We were able to recreate the six selected scenes from our
physical and digital prototypes using collaborative immersive
authoring with XRDirector. Since the quality of the created
product depends on time, we fixed the times prior to the exper-
iment. Including filming and fixing some technical issues with
SteamVR, we spent three hours to recreate four scenes from
Lion King and one hour for Beat Saber and ARcade Plane
each. Compared to the low effort for the physical prototypes
and high effort for the digital A-Frame and Unity prototypes
(with high-fidelity 3D models and scripted animations closely
following the original character, light, and camera movement),

we found the effort with XRDirector to be low—medium with
major time savings due to collaborative animations production.

Spatial Coordination Challenges

In our video analysis, we identified issues related to spatial
coordination and selected representative examples shown in
Figure 14. We found four classes of issues:

e spatial awareness: differences in designers’ positions rel-
ative to virtual or physical objects, differences between
virtual and physical world geometry, or differences in the
designers’ views with no common reference points cause
coordination challenges—most challenging for the director
instructing actors on where and how to move in virtual or
physical space, for example, when the director wanted the
AR camera or VR actor to move in a particular way or to a
specific location (Figure 14.1 and 3).

e spatial constraints: differences between dimensions of
the virtual and the physical worlds or differences between
volumetric shapes of the virtual and physical world cause
coordination challenges—most challenging when physical
space is too limited, for example, when the VR actor and
AR camera almost collided (Figure 14.1), or when physical
geometry makes it hard to perform movements that match
the requirements of the virtual world, for example, when
Rafiki was to move up Pride Rock the actor simulated this
by initially bending down (Figure 9.1);

e spatial mappings: differences in coordinate spaces be-
tween devices or accumulated tracking error cause coor-
dination challenges—most challenging when designers use
the same mode, for example, when one VR actor was to
move the cubes while the VR player was swinging the
sabers (Figure 14.2) or when one AR actor was to fly the
plane while the AR camera was to pan and tilt to keep it in
view (Figure 14.4);

e spatial resolutions: differences in tracking precision be-
tween devices or due to rescaling the virtual world cause
coordination challenges—most challenging when actors
needed to perform slow or no movements, for example,
when Simba’s head was to turn while keeping the rest of
the body still and two VR actors simulated this with one
turning the HMD controlling the head and the other keep-
ing the body pose still (Figure 14.3), or when movements
had to be compressed/exaggerated to counterbalance re-
duced/increased world scale, for example, when the plane
was to fly realistically and the AR actor had to perform
almost parabolic motion (Figure 14.4);

Workarounds in XRDirector and Trade-offs

We note that most instances of spatial coordination challenges
were of more than one class of issue and that the challenges
seemed harder the more issues came together. Our video
analysis showed that the functions provided by XRDirector
helped address the vast majority of issues, but that selection
and use of the best function to counteract an issue required
practice and making trade-offs. The two key functions we
made extensive use of were the recenter and rescale functions.

Rafiki

[

l Camera

Recentered
Camera (AR) Camera (AR)
[(oo Actor (VR) Actor (VR) 00 P

Figure 15. Recenter and rescale functions: 1) in Lion King, the camera
moves to a different spot in the room and recenters the virtual world
(reset position to (0,0,0)) to make better use of limited physical space in
AR; 2) in Beat Saber, the director rescales the virtual world (reduce scale
to 0.5) to allow the actor moving the cubes to travel farther in VR—the
viewer is not impacted by this and views everything at original scale.

Recenter Function

Workarounds. Figure 15.1 illustrates the use of the recenter
function to resolve spatial constraints and align spatial map-
pings between designers. To work with limited physical space,
the AR camera first moved to a different physical location,
then recentered the virtual world to reset their location in the
virtual world and demonstrate the movement starting from that
position. When done as illustrated, this also aligned the spatial
mapping with the location of the VR actor so that the designer
in the camera role could see the actor and Rafiki character at
matching positions in AR.

Trade-offs. Figure 14.1 depicts a near collision due to limited
physical space for the subsequent dolly-out move. The AR
camera could have moved to a different physical position
and could have recentered again. The trade-offs are that this
would require a cut and a second take to continue the scene
and would again increase the differences in spatial mappings
between designers. Therefore, the director resolved the issue
by downscaling the world and guiding the AR camera’s hand
movement to record the dolly-in and out in one take.

Rescale Function

Workarounds. Figure 15.2 illustrates the use of the rescale
function to increase spatial resolution and take advantage of
different spatial mappings. One of the primary challenges in
Beat Saber was that the cubes had to move increasingly faster
towards the player with the sabers over a relatively long dis-
tance in virtual space. The director solved this by downsizing
the virtual world such that the virtual objects shrink in size.
As a result, the same physical motion as at the original size
would make the cubes appear to move faster and farther in
virtual space. Importantly, the change in world scale is not
visible to viewers, resulting in a seamless viewer experience.

Trade-offs. The difference in perceived motion when chang-
ing the size of the virtual world creates a mismatch between
the designer’s movement in physical space and the resulting
3D character’s trajectory. For example, when the virtual world
is scaled very large, dolly moves in virtual space will need
to be exaggerated, while tilts and pans directly match the de-
signer’s movement in physical space. While we were able
to balance these differences with practice, they could also be

Modes /
Roles

Director

Actors

Lights

Camera

3D mode

AR mode

VR mode

Good at

Bad at

Good at

Bad at

Good at

Bad at

instruct AR/VR designers relative
to physicallvirtual position

know how scene views in ARIVR

instruct AR designers relative
to physicallvirtual position

instruct VR designers if their
realjvirtual positions don't match

instruct VR designers
relative to virtual position

instruct AR designers if their
realjvirtual positions don't match

plan movement of 3D character

embody 3D character
act movement out naturally

plan movement of 3D character
act movement out naturally

understand virtual spatial
references

embody 3D character
act movement out naturally

understand physical spatial
references

control lights/shadows precisely

know how lights/shadows view in

control lights/shadows on
physical objects

know how lights/shadows view
in VR

control lights/shadows on
virtual objects

know how lights/shadows view
in AR

move camera precvsely
pan camera along one axis

move camera naturally
know how scene views in AR'VR

move camera naturally

pan camera along one axis
know how scene views in

move camera naturally
know how scene views in 3D

pan camera along one axis
know how scene views in AR

Figure 16. Roles and modes in XRDirector: comparing strengths and weaknesses of each role/mode combination.

addressed algorithmically by adding support for non-linear
mappings in XRDirector via gain functions [30].

Strengths and Weaknesses of Role/Mode Combinations
We found that XRDirector’s expressive power and flexibility
comes from the flexibility to match roles and modes. The best
role/mode match is a function of i) the type of virtual object
being controlled, ii) where the object is located in physical
space, iii) how the object needs to move in virtual space.

Using XRDirector to recreate the case studies and our test-
driven development of each role and mode allowed us to iden-
tify strengths and weaknesses of role/mode combinations. Fig-
ure 16 details our analysis. The overall concerns directly
relate to the identified spatial challenges: knowing how the
scene views for other designers, having precise control over
movements, and acting on the director’s instructions.

In terms of overall preferences, our designers in the actor role
preferred to animate a 3D character according to their exact
head movements in VR mode, designers in the camera role
preferred the AR mode on the phone, in both cases because
it seemed more intuitive to them. Our director preferred the
3D mode to maintain an overview of what happens in the
virtual world and because he did not interfere with designers
performing in physical space.

ADDITIONAL APPLICATIONS

In this section, we present two additional applications we
created with XRDirector (Figure 17). These examples are
meant to demonstrate creative usage of XRDirector and ways
of enabling Wizard of Oz. They are also interesting because
they started to look at possible future extensions.

Figure 17. More applications: /) Kung Fu Stickman based on four AR
phones strapped to the VR actor’s limbs; 2) Iron Man HUD simulated
by a VR actor placing a video screen to face a VR viewer.

Kung Fu Stickmen

Our first application was a recreation of the once popular
Kung Fu Stickman series (Figure 17.1). The series consisted
of stick figure fighting scenes animated in Flash. Our idea
was to instrument a VR actor with multiple AR phones to
track his joints and animate a stick figure. The first attempt
was to create the puppet by nesting a sphere for the head
and stretched boxes for the arms and legs in A-Frame. This
worked in principle to animate the different joints. However,
the lack of a precise calibration method for ARCore Android

phones and the fact that tracking error accumulates quickly
with rapid movements caused the joints not to hold together
nicely. Our solution was to add physics to the scene and add
joints with cone twist constraints to the stickfigure. This then
caused the issue that physics would be run and simulated on
each device, for which we developed a method that only the
director runs the physics to animate dynamic bodies such that
body movement is automatically synced with other clients.

Iron Man

Our second application was a recreation of the Iron Man HUD
(Figure 17.2). Our idea was to allow a viewer to experience
the HUD on a VR headset, while a VR actor moves different
screens into view to compose the HUD for the viewer. We
prototyped the HUD screens as an animated slidedeck con-
sisting of several layers in Keynote and exported each layer
as a separate video. While it was fast and easy to compose
the A-Frame scene from the video assets mapped onto semi-
transparent planes, it was initially hard for the VR actor to
control visibility and simulate a dynamic HUD for the viewer.
Our solution was to use black fog in the scene around the
viewer so that different HUD components could be quickly
and easily shown or hidden just based on distance from the
viewer. As an extension of this, we built on XRDirector’s
WebRTC infrastructure to render a life video feed from the
actor on one device to the headset, enabling the simulation of
a video chat or personal assistant by another actor.

CONCLUSION

We presented XRDirector, a collaborative mixed-reality sys-
tem that orchestrates multiple designers working on AR/VR
authoring tasks by assigning them specific roles inspired from
film making. We showed that XRDirector is able to recreate
fairly complex 3D, VR, and AR scenes in less than 30 min-
utes, which previously required hours of AR/VR development
effort. Based on our investigations around XRDirector, we see
a lot of generative power and a flexible platform for experi-
mentation. While we included initial usages of the system for
Wizard of Oz, we believe that this is one of the main future
research directions. We hope that XRDirector’s tight integra-
tion with A-Frame can reduce the learning curve and enable
progression towards fuller usage of such AR/VR development
platforms. We observed how our role-based prototyping frame-
work makes key concepts of mixed-reality interfaces such as
virtual cameras, 3D animation, and lighting easily understand-
able. We hope that tools like XRDirector will enable broader
participation of less technical designers. This is something
we would like to enable by making XRDirector available to
interested researchers and practitioners.

Acknowledgments
Thanks to Ilma Bilic and Amy (Shih-Ting) Lin for their help
with the described prototypes and reenactments in XRDirector.

REFERENCES
[1] Raphael Anderegg, Loic Ciccone, and Robert W.

Sumner. 2018. PuppetPhone: puppeteering virtual
characters using a smartphone. In Proc. MIG. 5:1-5:6.

[2] Connelly Barnes, David E. Jacobs, Jason Sanders,

3

[4

[5

[6

[7

[8

[9

[10

[11

[12

[13

—

]

]

]

—

]

—

]

]

[ar}

[t

Dan B. Goldman, Szymon Rusinkiewicz, Adam
Finkelstein, and Maneesh Agrawala. 2008. Video

puppetry: a performative interface for cutout animation.

TOG 27, 5 (2008), 124:1-124:9.

Mark Billinghurst and Hirokazu Kato. 1999.
Collaborative mixed reality. In Proc. ISMAR. 261-284.

Lung-Pan Cheng, Patrick Liihne, Pedro Lopes,
Christoph Sterz, and Patrick Baudisch. 2014. Haptic
turk: a motion platform based on people. In Proc. CHI.
DOI:http://dx.doi.org/10.1145/2556288.2557101

Lung-Pan Cheng, Sebastian Marwecki, and Patrick
Baudisch. 2017. Mutual Human Actuation. In
Proc. UIST. 797-805.

Lung-Pan Cheng, Thijs Roumen, Hannes Rantzsch,
Sven Kohler, Patrick Schmidt, Robert Kovacs, Johannes
Jasper, Jonas Kemper, and Patrick Baudisch. 2015.
TurkDeck: Physical Virtual Reality Based on People. In
Proc. UIST. 417-426.

Richard C. Davis, Brien Colwell, and James A. Landay.

2008. K-sketch: a ’kinetic’ sketch pad for novice
animators. In Proc. CHI. 413-422.

Mira Dontcheva, Gary D. Yngve, and Zoran Popovic.
2003. Layered acting for character animation. 70G 22,
3 (2003), 409-416. DOI:
http://dx.doi.org/10.1145/882262.882285

Steven Dow, Jaemin Lee, Christopher Oezbek, Blair
Maclntyre, Jay David Bolter, and Maribeth Gandy.
2005a. Wizard of Oz interfaces for mixed reality
applications. In Proc. CHI Extended Abstracts.
1339-1342.

Steven Dow, Blair MacIntyre, Jaemin Lee, Christopher
Oezbek, Jay David Bolter, and Maribeth Gandy. 2005b.
Wizard of Oz support throughout an iterative design

process. IEEE Pervasive Computing 4, 4 (2005), 18-26.

Barrett Ens, Joel Lanir, Anthony Tang, Scott Bateman,
Gun Lee, Thammathip Piumsomboon, and Mark
Billinghurst. 2019. Revisiting collaboration through
mixed reality: The evolution of groupware. IJHCS 131
(2019).

Jamie Feltham. 2017. Disney Is Using VR To Help Film
The Lion King Remake. Available from uploadVR at
https://uploadvr.com/
disney-using-vr-film-lion-king-remake/. (July 2017).

Maribeth Gandy and Blair MaclIntyre. 2014. Designer’s
augmented reality toolkit, ten years later: implications
for new media authoring tools. In Proc. UIST.

[14]

[15]

(16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

Taejin Ha, Woontack Woo, Youngho Lee, Junhun Lee,
Jeha Ryu, Hankyun Choi, and Kwanheng Lee. 2010.
ARtalet: tangible user interface based immersive
augmented reality authoring tool for Digilog book. In
Proc. ISUVR. 40-43.

Robert Held, Ankit Gupta, Brian Curless, and Maneesh
Agrawala. 2012. 3D puppetry: a kinect-based interface
for 3D animation.. In Proc. UIST. 423-434.

Andrew J. Hunsucker, Kelly McClinton, Jennifer Wang,
and Erik Stolterman. 2017. Augmented Reality
Prototyping For Interaction Design Students. In Proc.
CHI Extended Abstracts. 1018—-1023.

Annie Kelly, R. Benjamin Shapiro, Jonathan de Halleux,
and Thomas Ball. 2018. ARcadia: A Rapid Prototyping
Platform for Real-time Tangible Interfaces. In

Proc. CHI.

Boriana Koleva, Ian Taylor, Steve Benford, Mike Fraser,
Chris Greenhalgh, Holger Schnédelbach, Dirk vom
Lehn, Christian Heath, Ju Row-Farr, and Matt Adams.
2001. Orchestrating a mixed reality performance. In
Proc. CHI. 38-45.

Walter S. Lasecki, Juho Kim, Nick Rafter, Onkur Sen,
Jeffrey P. Bigham, and Michael S. Bernstein. 2015.
Apparition: Crowdsourced User Interfaces that Come to
Life as You Sketch Them. In Proc. CHI.

Gun A. Lee, Claudia Nelles, Mark Billinghurst, and
Gerard Jounghyun Kim. 2004. Immersive Authoring of
Tangible Augmented Reality Applications. In

Proc. ISMAR. 172-181.

Sang Won Lee, Yujin Zhang, Isabelle Wong, Yi Wei
Yang, Stephanie D. O’Keefe, and Walter S. Lasecki.
2017. SketchExpress: Remixing Animations for More
Effective Crowd-Powered Prototyping of Interactive
Interfaces. In Proc. UIST. 817-828.

German Leiva and Michel Beaudouin-Lafon. 2018.
Montage: A Video Prototyping System to Reduce
Re-Shooting and Increase Re-Usability. In Proc. UIST.
675-682.

David Lindlbauer and Andy D. Wilson. 2018. Remixed
Reality: Manipulating Space and Time in Augmented
Reality. In Proc. CHI. 129.

Blair MacIntyre, Maribeth Gandy, Steven Dow, and
Jay David Bolter. 2004. DART: a toolkit for rapid design
exploration of augmented reality experiences. In

Proc. UIST.

Jens Miiller, Roman Rédle, and Harald Reiterer. 2016.
Virtual Objects as Spatial Cues in Collaborative Mixed
Reality Environments: How They Shape
Communication Behavior and User Task Load. In
Proc. CHI. 1245-1249.

Michael Nebeling and Katy Madier. 2019. 360proto:
Making Interactive Virtual Reality Augmented Reality
Prototypes from Paper. In Proc. CHI.

http://dx.doi.org/10.1145/2556288.2557101
http://dx.doi.org/10.1145/882262.882285
https://uploadvr.com/disney-using-vr-film-lion-king-remake/
https://uploadvr.com/disney-using-vr-film-lion-king-remake/

[27] Michael Nebeling, Janet Nebeling, Ao Yu, and Rob Gervautz, and Werner Purgathofer. 2002. The

Rumble. 2018. ProtoAR: Rapid Physical-Digital studierstube augmented reality project. Presence:
Prototyping of Mobile Augmented Reality Applications. Teleoperators & Virtual Environments 11, 1 (2002),
In Proc. CHI. 33-54.

[28] Michael Nebeling and Maximilian Speicher. 2018. The [32] Harrison Jesse Smith and Michael Neff. 2018.

Trouble with Augmented Reality/Virtuality Reality Communication Behavior in Embodied Virtual Reality.
Authoring Tools. In Proc. ISMAR Adjunct. In Proc. CHI. 289.

[29] Michael Nitsche and Sanjeev Nayak. 2012. Cell Phone [33] Maximilian Speicher, Brian D. Hall, and Michael
Puppets: Turning Mobile Phones into Performing Nebeling. 2019. What is Mixed Reality?. In Proc. CHI.
Objects. In Proc. ICEC. 363-372. [34] Maximilian Speicher and Michael Nebeling. 2018.

[30] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, GestureWiz: A Human-Powered Gesture Design
and Tadao Ichikawa. 1996. The Go-Go Interaction Environment for User Interface Prototypes. In
Technique: Non-Linear Mapping for Direct Proc. CHI.

Manipulation in VR. In Proc. UIST. 79-80. [35] Jia Wang, Owen Leach, and Robert W. Lindeman. 2013.

[31] Dieter Schmalstieg, Anton Fuhrmann, Gerd Hesina, DIY World Builder: An immersive level-editing system.
Zsolt Szalavari, L Miguel Encarnacao, Michael In Proc. 3DUI. 195-196.

	Introduction
	Background
	AR/VR Prototyping and Wizard of Oz Tools
	Performance Animation and Puppetry Interfaces

	Workshops with Novice AR/VR Developers
	Case Studies
	Case Study 1: Lion King (2019) Teaser
	Physical Prototype
	Digital Prototype

	Case Study 2: Beat Saber
	Physical Prototype
	Digital Prototype

	Case Study 3: ARcade Plane
	Physical Prototype
	Digital Prototype

	Requirements
	R1: Flexible workflows for prototyping 3D animations
	R2: Joint control over multiple moving parts
	R3: Clearly established roles to facilitate collaboration

	XRDirector
	Roles
	Modes

	Using XRDirector
	Lights, Camera, Action!
	Rescaling the Virtual World
	Record & Replay of Object Manipulations
	Post-processing of Recorded Animations

	Implementation
	Final Workshops with XRDirector
	Method
	Results

	Final Case Studies with XRDirector
	Spatial Coordination Challenges
	Workarounds in XRDirector and Trade-offs
	Strengths and Weaknesses of Role/Mode Combinations

	Additional Applications
	Conclusion
	References

