
XDKinect: Development Framework for
Cross-Device Interaction using Kinect

Michael Nebeling, Elena Teunissen, Maria Husmann and Moira C. Norrie
Department of Computer Science, ETH Zurich

CH-8092 Zurich, Switzerland
{nebeling,husmann,norrie}@inf.ethz.ch, telena@student.ethz.ch

ABSTRACT
Interactive systems set in multi-device environments continue
to attract increasing attention, prompting researchers to ex-
periment with emerging technologies. This paper presents
XDKinect—a lightweight framework that facilitates devel-
opment of cross-device applications using Kinect to mediate
user interactions. The main benefits of XDKinect include its
simplicity, adaptability and extensibility based on a flexible
client-server architecture. Our framework features a time-
based API to handle full-body interactions, a multi-modal
API to capture gesture and speech commands, an API to
utilise proxemic awareness information, a cross-device com-
munication API, and a settings API to optimise for particular
application requirements. A study with developers was con-
ducted to investigate the potential of these features in terms
of ease of use, effectiveness and possible use in the future.
We show several example applications of XDKinect, as well
as discussing advantages and limitations of our framework as
revealed by our user study and experiments.

Author Keywords
Kinect; development framework; cross-device applications.

ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies

INTRODUCTION
The flexibility and complexity imposed by multi-device en-
vironments often requires experimentation with alternative,
sometimes radically different, user interface designs. Our
goal is to exploit the potential of Microsoft Kinect1 for ex-
perimentation with different forms of multi-modal interaction
involving multiple devices and users. Kinect’s RGB camera,
3D depth sensors and high-quality audio capture are valuable
for augmenting target applications with support for multi-
modal input. Its relatively cheap price and increased popu-
larity make Kinect attractive to be explored for multi-device

1http://www.kinectforwindows.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EICS 2014, June 17–20, 2014, Rome, Italy.
Copyright c© 2014 ACM 978-1-4503-2725-1/14/06 ...$15.00.
http://dx.doi.org/10.1145/2607023.2607024

application development, in particular, in settings that previ-
ously required complex hardware and software setups [1, 16].

This paper presents XDKinect, a user interface development
toolkit that uses Kinect to mediate interactions between mul-
tiple devices and users. XDKinect is characterised by three
main aspects: (1) lightweight support for cross-platform,
multi-device development based on native web technologies
with which many developers are already familiar, (2) a flex-
ible client-server architecture enabling a variety of multi-
device ecosystems around Kinect, (3) useful programming
abstractions from low-level details of Kinect’s standard SDK.

First, our goal is to provide a lightweight toolkit for easy
and rapid development of multi-device applications using
Kinect as an intermediator. Currently, a wide range of skill
sets and experience with many different platforms, languages
and technologies are required for implementations to achieve
compatibility with many types of devices. We promote a
web-based approach that seems promising to reach across de-
vice boundaries as it, not only enables applications to run
on the wide range of web-enabled devices available today,
but also allows developers to leverage their knowledge of
web standards. This is in contrast to approaches that pro-
mote new models and languages to support multi-device de-
velopment [13]. These approaches often tie in with cer-
tain programming paradigms (e.g. model-based [8], object-
oriented [4], data-oriented [2]), impose multiple abstraction
levels, or require proprietary languages for programming and
specification, all of which seems to work against widespread
adoption.

The second important aspect of XDKinect is its flexible
client-server architecture. The core logic of XDKinect appli-
cations can be shared and distributed between one or multiple
clients and a server used for hosting Kinect. This special role
of the server enables many different multi-device scenarios
around Kinect. Supported operating systems and platforms
include Android, iOS and Windows. Given that the Kinect
SDK is only available for Windows, the XDKinect server cur-
rently requires Windows. However, XDKinect clients can
be any web-enabled device with support for modern web
browsers. This includes the whole range from mobile devices
such as smartphones and tablets (e.g. Android phones, Apple
iDevices), over laptops and desktops, to tabletops (e.g. Mi-
crosoft PixelSense) and interactive walls.

Third, XDKinect affords useful abstractions from Kinect’s
standard SDK. Specifically, it provides a settings API to op-

(a) Browsing a collection of images using hand gestures (b) Selecting an image and moving it to another device

Figure 1. Scrapbook application using XDKinect for whole-body gesture-based cross-device interaction

timise for particular application requirements, a time-based
API to query and constrain Kinect streaming data, a multi-
modal API for gesture and speech recognition, and APIs for
inter-client communication to implement cross-device ses-
sions involving multiple, distributed clients [11] as well as
for proxemic interaction [1].

To demonstrate the potential of XDKinect, we present two
applications created using our framework. A first example
application is Scrapbook shown in Figure 1. Here, a user
can browse through a collection of images on one device us-
ing hand gestures and pull selected ones over to another de-
vice for additional tasks. In a second application, we show
how XDKinect can also take cues from the user’s position
and adapt the displayed content to fit either into personal or
ambient interaction modality [16]. Moreover, collaborative
interaction is feasible since input from more than one user
and device can be distinguished using XDKinect.

This paper is organised as follows. We begin in the next
section with a discussion of related work. The key features
of XDKinect and its architecture are then presented together
with our implementation. This is followed by a description of
the two sample applications developed using XDKinect. We
then present our study conducted with 12 developers to assess
its ease of use and effectiveness for building cross-device ap-
plications. Finally, we compare XDKinect with other solu-
tions and discuss limitations as well as future work.

BACKGROUND
Our work relates to three streams of research: proxemic
and ambient interaction, multi-device user interfaces and in-
browser Kinect applications.

Proxemic and Ambient Interaction
Research in proxemic interaction investigates spatial rela-
tionships between users and objects, taking cues from dis-
tance, orientation, movement and identity to study interac-
tion behaviour of users and devices in their immediate envi-
ronment. Ballendat et al. [1] extended Hall’s proxemic the-
ory by adding notions of fine-grained sensing of nearby peo-
ple and devices, mediating between implicit and explicit in-
teraction, and distinguishing between four discrete proxemic
zones. These principles were incorporated into a framework,

which they illustrated using the scenario of a Proxemic Me-
dia Player. Later, they developed the Proximity Toolkit [6]
that gathers data from various tracking devices, making it
available through an event-driven, object-oriented API. Re-
lationships between entities can be observed and closely in-
vestigated using a visual monitoring tool. Finally, GroupTo-
gether [7] augments proxemic principles with theories of F-
formation and micro-mobility. The former investigates phys-
ical arrangements of a small group of people engaged in a
focused conversation, while the latter considers the impact of
re-orienting and re-positioning physical devices on informa-
tion sharing techniques. Combining these two aspects, new
techniques of cross-device interaction with emphasis on fluid
and smooth communication can be designed. For instance,
tilting a device by a small angle may trigger an information
sharing process with other devices within proximity.

Similar ideas for proxemic interaction were also proposed
in [16], conceptualising design principles for developing a
shareable, public and private Interactive Ambient Display.
The principles include visualising the data in a calm, aes-
thetically pleasing manner, naturally revealing meaning and
functionality, supporting short-duration fluid interaction, and
promoting shared use while combining public and personal
information. Based on these principles, an interaction frame-
work was developed with support for four continuous phases
with fluid inter-phase transitions: ambient display, implicit
interaction, subtle interaction and personal interaction.

XDKinect builds on these works, implementing the core ideas
in a web-based toolkit with the goal of providing lightweight
technical tools for rapidly developing and experimenting with
new forms of cross-device interaction in multi-device envi-
ronments. While previous works focused on the types of ap-
plications and interaction techniques that could be supported
if there were such technologies, our main goal is to enable de-
velopers with varying programming experience to implement
such applications given technologies such as Kinect.

Multi-Device User Interfaces
A logical framework to alleviate development of multi-device
applications with distributed user interfaces was presented in
[13]. Their work identifies several design dimensions to help

WebSocket
server
(Fleck)

XDKinect
server-side

module

XDKinect Server

Client 1

XDKinect
client-side module

JSON

OS

Kinect for
Windows driverRaw

data

Client 2…

Web Browser
Browser
plugin

(ActiveX)

JavaScript
library

Author’s
JavaScript

COM objects

DOM
Events

Raw
data

Kinected Browser XDKinect

Kinect for
Windows driver

OS Author’s
JavaScript

Figure 2. XDKinect’s client-server architecture compared to the typical way of using a web browser plugin to access Kinect data directly

researchers and developers better analyse and evaluate current
solutions. It provides an extensive overview of a wide range
of various strategies in cross-platform development including
abstract user interface representations, distribution and mi-
gration between multiple devices and users. As such, it offers
a systematic classification of an assortment of design deci-
sions and their shortcomings, serving as a valuable starting
point into research about multi-device environments.

Many different approaches have been explored with object-
oriented frameworks such as ZOIL [4], data-oriented frame-
works such as Shared Substance [2] and model-based frame-
works such as [8]. In a recent paper [11], we presented
our ongoing work on a platform facilitating design and eval-
uation of cross-device applications both at the data model
and user interface level. The paper introduces the notion of
cross-device sessions that link the concepts of user, device
and information. Developers can specify different scenar-
ios of information sharing, where devices and sessions can
be paired flexibly, allowing completely independent interac-
tions, shared interactions, or arbitrary mixtures thereof. XD-
Kinect implements a simplified version of this session con-
cept for cross-device communication and keeping track of
participating devices and users.

In-Browser Kinect Applications
Several attempts have been made to make Kinect available
from within web browsers. Common to libraries such as
Kinected Browser [5], KinectJS2 and DepthJS3 is that they
extend the familiar JavaScript DOM event model with cus-
tom events to support processing of Kinect’s skeletal track-
ing and raw data streams (audio, colour, depth and infrared)
directly in the browser. While this is one of the initial chal-
lenges we also had to address in developing XDKinect, these
solutions are limited to single-device scenarios and only cer-
tain browsers. Also, tight integration with the browser re-
quires that the Kinect is connected to the same computer on
which the client is running. These factors taken together con-
siderably limit the types of applications that can be created
and the settings in which they can be deployed and tested.

XDKINECT
The aim of XDKinect is to facilitate development of cross-
device interfaces and interaction techniques that can cater for
a wide range of applications and use scenarios. A crucial
2http://kinect.childnodes.com
3http://depthjs.media.mit.edu

step in designing a general and useful framework was to ex-
periment with different concepts and architectural designs to
support the development process. To do so, we created sev-
eral applications to assess Kinect’s capabilities and recognise
the most common requirements. We present some examples
in the following sections.

XDKinect’s architecture was developed in several iterations.
Initially, the main idea was to provide a shorthand method to
access Kinect data from within the browser. We also wanted
to base the project on existing frameworks, KinectJS and
DepthJS. Sadly, however, these are no longer maintained and
incompatible with current browser versions. As we started to
experiment with our own Kinect framework in several related
projects, the number of architectural concerns grew with the
need to support different requirements. For example, some
applications such as a simple gestural controller for Power-
Point presentations only required Kinect’s skeleton tracking,
while another one with the goal of supporting web brows-
ing using Kinect for gesture and speech input required ad-
ditional Kinect data streams. In March 2013, Microsoft re-
leased a new version of the Kinect SDK4, which was after we
had started working on the XDKinect project. A novel set of
features was provided with KinectInteraction, an extension
that incorporates gesture-based tracking of a user’s primary
interactive hand allowing grip and press gestures to be de-
tected. KinectInteractions rely on another tracking method
that requires an additional Kinect data stream. Evolutions like
this drove us to pay particular attention to the design of XD-
Kinect’s architecture so that any component could be adapted
and extended to include new features with little effort.

Figure 2 shows XDKinect’s final architecture and how it com-
pares to previous solutions. Although based on a client-server
model, XDKinect breaks from the traditional roles in that the
server is not primarily used to host and manage the content,
but to host and control the Kinect. Our architecture is differ-
ent from existing solutions as it enables scenarios in which
the Kinect is not directly connected to the client computer.
This includes cross-device interaction involving multiple dis-
tributed clients, which is possible based on a single Kinect
server. The cost of this indirection is kept minimal as XD-
Kinect is highly configurable and implements several mech-
anisms to reduce client or server-side processing as required
and manage with the bandwidth while controlling what kinds
of data are processed and transferred.

4http://www.microsoft.com/en-us/kinectforwindows/develop/new.aspx

Figure 3. XDKinect’s features with code examples

The client and server-side components both employ an event-
driven design. Based on this architecture, XDKinect supports
two different ways of accessing Kinect data. First, similar to
Kinected Browser [5], a low-level approach is supported by
providing direct access to Kinect’s data streams. For exam-
ple, XDKinect provides an event to capture skeleton coordi-
nates from the server (Figure 3). The event is fired whenever
a new Kinect skeleton frame is available. To receive skeleton
data, developers only need to subscribe to the event by declar-
ing a callback function. At the same time, however, we also
support high-level access similar to KinectJS and DepthJS,
with which it is possible to fire custom events for more com-
plex actions composed of multiple low-level events that may
be generated on either the client or the server side.

In the following, we discuss the key concepts and how they
are encapsulated in XDKinect’s APIs (cf. Figure 3).

Time-based API
To support low-level access, XDKinect generalises the cen-
tral concept of a touch history used in jQMultiTouch [10] to
different interaction modalities in that XDKinect maintains
internally a history for each Kinect data stream. For exam-
ple, XDKinect collects joints coordinates for each tracked
user from the skeleton stream. New Kinect skeleton events
are generated at a rate of 30 frames per second. Every incom-
ing Kinect skeleton object is pushed into a buffer, while the
oldest entries are deleted. Here, the default storage duration
amounts to 4.5 seconds (135 frames per tracked user). This is
sufficient for many applications relying on skeletal tracking,
but we will later describe how it can be configured both client
and server-side. Possible applications include hand-as-cursor
tracking, custom gesture detection, and various statistics to
deduce user behaviour. A sample joints coordinates history
object is shown in Listing 1.

[{trackingId: 148, timestamp: 1374225394869, rightHand:
{x : 0, y: 0.1, z: 0.2}},

{trackingId: 148, timestamp: 1374225395678, rightHand: {x
: 0.3, y: -0.15, z: 0.25}}]

Listing 1. Sample history object; only right hand is tracked

Similar to jQMultiTouch, developers are able to segment,
query and constrain the history easily, e.g. to seek a certain
frame, extract a portion of the history, filter by skeleton, look

for selected joints, and evaluate it based on thresholds. List-
ing 2 shows a simple example for flick-hand gestures.
XDKinect.on("skeleton", function(skeleton) {
var hand = skeleton.joints[hand], handRef =

XDKinect.skeletonHistory({ skeleton: skeleton,
time: ’0..300’, joints: [’leftHand’, ’rightHand’]
}).last().joints[hand], deltaX = hand.x-handRef.x,
deltaY = hand.y-handRef.y;

if (Math.abs(deltaX) >= 0.4 && Math.abs(deltaY) <=
0.075) {

if (deltaX < 0) {
console.log(hand+" flick-left");

} else {
console.log(hand+" flick-right")

}
} });

Listing 2. History usage for left/right-hand flick gestures

Additionally, the colour stream can be buffered either at 30
frames per second with 640x480 RGB colour bitmaps or at 12
frames with 1280x960 pixels. The depth and infrared streams
are represented in specific image formats at 30 frames with
640x480 pixels, while audio is available in 16-bit PCM for-
mat, sampled at 16 kHz. Similar to the skeleton stream, these
raw data streams can be segmented, constrained and, using
additional libraries, further processed, e.g. looking for certain
speech commands in the audio stream.

Multi-modal API
As mentioned above, XDKinect also offers a high-level API
to register for, and react on, recognised gesture and speech
commands from the server. XDKinect deduces high-level
events from the skeleton, interaction and audio streams.
While Kinect’s skeletal tracking does not include hand track-
ing, KinectInteraction can detect hand gestures such as grip,
grip release and press, and can discern between the right and
the left hand of one or two users. The audio stream can
be processed using speech recognition software. Kinect’s
default speech recognition service, Microsoft.Speech5, was
specifically optimised for the Kinect hardware. It can de-
tect speech commands specified in W3C speech recognition
grammar6. XDKinect application developers do not have to
worry about the specifics and differences of these Kinect-
internal APIs. Rather, clients only need to subscribe for the
desired gesture and speech commands and will be notified
automatically as these are recognised (cf. Figure 3).

Proxemic API
Based on Kinect’s skeleton stream, another feature of XD-
Kinect is distinguishing different proxemic parameters such
as near and far distances between users and Kinect or be-
tween users themselves [1]. XDKinect allows developers to
divide Kinect’s field of view into multiple interaction zones
and trigger events based on distance thresholds. Applications
may use this information to support transition from one mode
into another similar to [16]. XDKinect also supports a sim-
ple form of multiple user tracking. Whenever a user enters
or leaves Kinect’s field of view, XDKinect triggers a corre-
sponding event. User identification is performed on the basis
of the Kinect skeleton IDs (cf. Figure 3).
5http://msdn.microsoft.com/en-us/library/jj127857
6http://www.w3.org/TR/speech-grammar

Cross-Device Communication API
While the features discussed so far rely on Kinect, XDKinect
adds an inter-client communication mechanism based on in-
stant messaging to enable cross-device interaction in real-
time. Information can be exchanged and shared between any
clients registered in the system. Each new client only needs
to connect to the server to be able to communicate with other
clients. Clients can pass information along and share state
through XDKinect’s internal messaging service that was in-
spired by [14], but was adapted to the web environment by
using web sockets and JSON for data exchange. We experi-
mented with different JSON formats to find a good compro-
mise between readability and traceability, which are impor-
tant for debugging, and processing time required for encod-
ing/decoding.

XDKinect is scalable to support a large number of clients.
First, each client runs independently from the others and may
only subscribe for information from the server. By default,
interactions performed with one client have no impact on oth-
ers. In order to be able to accept messages from other clients,
a listener for this type of event is required (Figure 3). An
important principle is the notion of active and passive clients.
While active clients continuously receive Kinect data, passive
clients do not. For example, while the main display is alert
and awaits interaction, a secondary, passive display could be
in sleeping mode since it first requires shared content from
the main display. All clients can be explicitly set to active/-
passive mode by the developer. This contributes to a boost
in performance, decreasing the overhead by cutting informa-
tion flow. Passive clients can be configured to automatically
“wake up” upon a message receipt from another client.

Note that it is also possible to run one or more XDKinect
clients and the XDKinect server locally so that it is sufficient
to use a multi-monitor setup on a single device.

XDKinect was specifically designed for cross-device appli-
cation development. While the cross-device support is there-
fore an essential part of the framework, it is implemented as
a module following good principles of software design. As a
result, developers may choose to extend or even replace this
component without having to touch other parts of the frame-
work. It is also the case that not all XDKinect applications
must make use of the cross-device communication API and,
as mentioned above, clients can work independently.

Settings API
One of XDKinect’s key features is the facility to configure
the server so that only data relevant for subscribed events
is processed and transferred to clients. Furthermore, many
parameters serve the goal of increasing the system’s overall
performance. For example, developers may switch Kinect’s
tracking (default/near), choose a skeleton selection strategy
(track the closest/most active skeletons) and specify the max-
imum number of users to be tracked7.

In order to receive information, clients must connect and first
instruct the server by providing an individual configuration,
7Note that current Kinect hardware can recognise up to six users and
fully track 20 joints of up to two skeletons.

such as active/passive status, joints to be tracked, gestures
to be recognised, speech grammar, and any additional XD-
Kinect events. Based on the information desired by clients,
the server configures the Kinect and filters the event histo-
ries to only send back relevant data. While clients also have
the possibility to change Kinect settings dynamically at run-
time, some changes may cause a delay or may even require
Kinect to be reset at run-time. For example, switching Kinect
tracking mode and reloading grammar for speech recognition
exhibits a seconds-long delay. XDKinect tries to avoid such
interruptions as much as possible by aggregating individual
client configurations on the server side.

IMPLEMENTATION
XDKinect is implemented in C# on the server and in
JavaScript/jQuery8 on the client side. The main purpose of
the server application is to pre-process Kinect data and trans-
fer it to each client as specified by that client’s individual
configuration. The server logic can be separated into four
main components responsible for 1) configuring Kinect, 2)
the handling of Kinect streams, 3) history keeping and fil-
tering, and 4) inter-client messaging. The client-side mod-
ule parses and dispatches messages from the server and other
clients. It exposes the Kinect data to the developer through
XDKinect’s client-side APIs. Communication between the
server and clients, and between clients, is based on the Web-
Socket protocol. Note that web sockets offer full duplex bi-
directional communication with much less overhead than tra-
ditional HTTP-based methods. XDKinect relies on Fleck9,
an open-source web socket server in C# to transmit data to,
and between, subscribed clients. All data, server-side notifi-
cations as well as inter-client messages, are exchanged via a
common JSON format.

Kinect’s skeleton stream is the primary source of informa-
tion, as it offers not only joint coordinates, but distance met-
rics and multiple user tracking is also deduced from it. Es-
sentially, the server maintains a list of tracked skeletons and
checks it for users that joined or left by comparing the Kinect
skeleton IDs each time a new frame arrives. If there are any
changes, all subscribed clients are notified. Analogously, any
client subscribed for distance change notification receives a
message when a user’s z skeleton coordinate is smaller or
larger than specified thresholds. Accordingly, the interaction
stream and audio stream are watched for gesture and speech
commands. Whenever a command is recognised, the server
compares the recognition results with the criteria set by any of
the clients. Should a match occur, the corresponding client is
notified. Cross-device communication is implemented using
the same mechanism. The server listens for message events
from clients. Once such an event is received, the server parses
the message and forwards it to the target client.

XDKinect can be extended on both the client and the server
side with little programming effort. For example, when the
new KinectInteractions came out, we linked the library to
the server, registered the interaction stream in XDKinect, and
specified a new event handler. Likewise, the client side was
8http://jquery.com
9https://github.com/statianzo/Fleck

(a) Annotating second image using hand-as-brush (b) Removing first image using gesture or speech

Figure 4. Scrapbook application using XDKinect for whole-body gesture-based cross-device interaction (cont.)

extended with a new event listener. It is also easily possi-
ble to integrate client-side gesture libraries such as $1 recog-
niser [17], e.g. to support stroke-based gestures such as circle-
hand. This requires a mapping from 3D space to 2D, e.g. by
only considering x and y coordinates.

APPLICATIONS
In this section, we present two sample applications based on
XDKinect. The first application, the Scrapbook mentioned
in the introduction, was produced with an early version of
XDKinect. The idea of Scrapbook is to browse through and
collect images from a large photo collection, e.g. photos of
places visited on a holiday, to put together an album. The sec-
ond application, Fotobook, is similar in idea, but makes more
advanced use of XDKinect’s features as it reacts to multiple
users and distinguishes different interaction zones.

Scrapbook
A web designer, Leia, searches for a collection of pictures
for a customer’s website. She stands in front of a large dis-
play and browses through the image gallery by swiping left or
right to go to the next or previous item (cf. Figure 1(a)). One
of the images catches her attention. Leia extends her arms
and, in one swishing motion, pulls the image to be copied
to the Scrapbook display (cf. Figure 1(b)). Satisfied with the
result, Leia continues browsing for more pictures. Another
one seems to satisfy her demands, and so she drags it over
as well. Yet, there is something about that image that disturbs
her. Deciding to fix it, Leia makes a graphical note on it using
her right hand as a brush (Figure 4(a)). For some time, Leia
continues browsing through the gallery and buffering pictures
on the Scrapbook. Suddenly she changes her mind about the
very first image and decides to remove it from the storage by
saying “delete one” (Figure 4(b)).

The early version of XDKinect offered only parts of the time-
based and multi-modal APIs. Support for flick hand gestures
and the pick-and-drop metaphor [15] was added by tracking
the user’s arm movements, comparing their actions against a
set of templates on the client side, and evaluating against the
respective joints’ coordinates tracked over time. The begin-
ning of the settings API was already implemented, enabling

developers to register only for selected joints. Speech recog-
nition was available, but not yet dynamically configurable as
all commands still had to be hard-coded on the server side.
The cross-device communication API was close to the final
version except for some wrapper functions.

Fotobook
Fotobook is based on the final version of XDKinect and ex-
ploits all available APIs. As before, we illustrate its usage
by means of a sample scenario. A professional photographer,
Luke, receives a last-minute call by a customer to do a web
photo album for one of his recent shoots. While he could also
look up the project on his main computer, Luke immediately
looks at his wall-sized display. Usually in an ambient mode,
the display exhibits an image slideshow to demo his work to
visiting clients, and no direct interaction is possible (Figure
5(a)). However, as he walks towards it, the display detects his
presence and switches into a personal interaction mode [16]
(Figure 5(b)). Luke browses through the images by using his
hand as a cursor [9]. Hovering over images that look promis-
ing, he quickly performs a push gesture in the air [9] to select
images for the photo album. As he is still not quite happy
with the album page’s design, he again marks some of the
images and rotates them by performing a mid-air circle ges-
ture. Furthermore, he adds shadow and polaroid effects to the
images using additional speech commands. Meanwhile, din-
ner time approaches, and Luke’s friend, Han, comes over just
as Luke performs a pick-and-drop interaction [15] to move
the content to the main display. When Han enters the inter-
action zone, the ambient display flickers shortly to announce
the presence of another user [1]. Han likes Luke’s first de-
sign, but suggests adding a background image to the photo
album page. He, too, selects an image from the interactive
display to “copy” it to the main display. The system notices
that Han, not Luke, performs this action, and places the im-
age in a temp area. To finish the design, Luke picks it up and
sets it as background.

In this scenario, the use of most XDKinect APIs comes to-
gether to realise interaction techniques known from related
work [1, 9, 15, 16]. For example, the time-based and multi-
modal APIs are used for the gesture and speech commands
similar to Scrapbook, but in this case also employing Kinect-

(a) Ambient mode when the user is far away (b) Interactive mode when moving closer (c) Personal mode as the user interacts

Figure 5. Fotobook application using XDKinect with support for hand-as-cursor interaction and different interaction zones

Interaction’s built-in press gesture to select images. In ad-
dition, the cursor’s position is calculated by mapping Kinect
skeleton coordinates into browser screen coordinates every
time a new Kinect frame arrives. The proxemic API is used
to switch between the ambient and interactive modes depend-
ing on whether a user is closer or farther than 2 metres from
the display. Moreover, the system noticed the arrival of a new
user, Han, by receiving information about another tracked
skeleton associated with a new ID. As a result, it switches
to an edit mode in which changes first have to be confirmed
by Luke, the owner of the photo album.

EVALUATION
We conducted a user study to examine XDKinect’s devel-
opment experience. Following Olsen’s guidelines [12], the
goal of our evaluation is to demonstrate “reduced solution
viscosity” and “ease of combination” by making use of XD-
Kinect’s various APIs as well as showing the potential to em-
power new users. The main task assigned to participants was
to develop a simple cross-device application based on Foto-
book from the previous section. The application consisted of
two XDKinect clients—an ambient display showing an im-
age gallery and another display to which the selected images
would be copied (Figure 6). Users should be able to move
a cursor with their hand and select images by performing a
push or a grip gesture. A magnified version of that image
would be transferred onto the main display. Users could then
use speech to tag the selected image. The recognised text
would be shown on an HTML5 canvas on the main display.
Moreover, the ambient display should react to proximity of
the user, switching from passive mode when users stand fur-
ther away to interactive mode as they come closer. At the
same time, the main display should show a notification when
users join and leave the Kinect sensor’s field of view.

Main Display Ambient Display

Figure 6. Study setup and target XDKinect application

Method
The study itself comprised 5 programming tasks, leading
step-by-step to the fully-fledged XDKinect application just
described. To give participants sufficient time to experience
development using XDKinect, the study was anticipated to
last around 1 hour. Each participant generally worked alone
and was free to adjourn at any moment without completing
all tasks. The tasks were carefully chosen to encompass ev-
ery interaction dimension offered by XDKinect. For exam-
ple, moving the cursor required skeletal tracking and man-
agement of the time-based API. The multi-modal API was
reflected in the press/grip gestures for image selection as well
as in speech recognition results being displayed on the can-
vas. Inter-client messaging was required to handle and sync
interactions across the displays. The settings API was thor-
oughly exploited as well, as participants had to set and adjust
many parameters including joints to be tracked, gestures to be
recognised, proximity to the display, and speech grammar.

The study procedure was as follows. First, participants were
given a short motivation about XDKinect and were intro-
duced to the study setup. A background questionnaire then
collected demographic information. In particular, they were
asked to state their prior knowledge of Kinect—both as a
user and developer—as well as rating their general web de-
velopment, interaction design, and JavaScript/jQuery pro-
gramming experience. For the rest of the study, participants
worked mostly autonomously under our supervision. We sup-
plied participants with a cheatsheet giving an overview of
XDKinect’s APIs, configuration options, and all supported
events. All participants were provided with the same skeleton
code in which they had to fill in the gaps. To focus the devel-
opment process on XDKinect’s features, we provided aux-
iliary functions to avoid implementing XDKinect-unrelated
functionalities such as moving the cursor by translating the
position using HTML, CSS and JavaScript. Once partici-
pants indicated that they were done, they completed a post-
study questionnaire, asking them to express agreement with
different statements on a 5-point Likert scale (1 = Strongly
Disagree, 5 = Strongly Agree).

We recruited 12 participants (1 female) with a general back-
ground in computer science. Ages ranged from 24 to 39
years with a median of 28. Half of them had prior experi-
ence using Kinect and the other half did not. On a 7-point

Background Ease of Use Time Future Use

Kinect Kinect SDK JS/jQuery Skeleton Gesture Speech Distance Multi-User Cross-Device mins.
P1 X r r r r t r r r r r r t r r r r t r r r r r t r r r r t r r r t r r r r r r r r r r t r 55 r r r t r
P3 X r r r t r r r r r r t r r r r r t r r r r r t r r r r r t r r r r t r r r r t r r r r t 50 r r r t r
P5 X t r r r r r r t r r r r r r r r r r t r r r r t r r r r t r r r r t r r r r t r r r r t 55 r r r t r
P7 X t r r r r r r r r r r r t r r r r t r r r r t r r r r r t r r r r t r r r r t r r r r t 60 r r r t r

P11 X t r r r r r r r r r r t r r r r r r t r r r r t r r r r t r r r r t r r r r t r r r r t 45 r r r r t
P12 X r r r r t r r r r r r t r r r r r r t r r t r r r r r r t r r r t r r r r r t r r r t r 25 r r r t r
P2 t r r r r r r r r t r r r r r r r r t r r r r t r r r r t r r r r t r r r r t r r r r t 65 r r r r t
P4 t r r r r r r r r r t r r r r r r r t r r r r t r r r r t r r r r t r r r r t r r r r t 35 r r r r t
P6 t r r r r r r t r r r r r r r r r r t r r r r t r r r r t r r r r t r r r r t r r r r t 30 r r r t r
P8 t r r r r r r r r r r t r r r r t r r r r t r r r r r r r r r r t r r r r t r r r r t r 40 r r t r r
P9 t r r r r r r t r r r r r r r r r r t r r r r t r r r r t r r r r t r r r r t r r r r t 45 r r r r t

P10 t r r r r r r t r r r r r r r r r r t r r r t r r r r t r r r t r r r r r t r r r r t r 60 r r r r t
Mean 1.92 3.42 4.42 4.33 4.82 4.50 4.82 4.67 47.08 4.33

Median 1 4 5 4.5 5 5 5 5 47.5 4

Table 1. Results from our study with 12 developers (first 6 had previous Kinect experience)

scale from 1 = Novice to 7 = Expert, participants reported on
average medium web development (mode = 3), interaction
design (mode = 3) and JS/jQuery programming experience
(mode = 5). While some did have programming experience
with the Kinect SDK, the overall rating was low (mode = 1).

Table 1 gives an overview of the participants’ skills and their
ratings. We discuss the results and our observations below.

Results
All participants were able to complete all tasks with almost
no help from us. The minimum completion time amounted
to 25 minutes, while the maximum completion time was 65
minutes (mean = 47.5, sd = 12.5).

In the post-study questionnaire, participants rated ease of use
and effectiveness of XDKinect in different areas including
skeletal tracking, gesture support and speech support, prox-
emic awareness, multiple users tracking, and cross-device
communication. Table 1 shows mean and median ratings for
ease of use. The ratings for effectiveness were very similar.
All in all, the received feedback was very positive.

We analysed which current concepts and interaction dimen-
sions had the most potential for improvement in terms of both
ease of use and effectiveness. For this, we considered the
lowest marks for all criteria. Speech recognition and multi-
ple users tracking received the best marks—no one awarded
a lesser grade than a 4 out of 5. Skeletal tracking, gesture and
distance support also fared fairly well with a neutral 3 being
the lowest mark. Cross-device communication was consid-
ered the least effective with a 1 by one participant, but was
still considered easy to use with the lowest rating of 4. Al-
though based on the principles described in [14], which were
argued to be powerful and effective for many applications,
some participants felt that our initial support for cross-device
sessions [11] using instant messaging might be too simple.

We also compared median ease of use and effectiveness rat-
ings between participants with and without prior knowledge
of Kinect. Participants without previous experience awarded
very high marks, resulting in the maximum median grade of
5 for all aspects. Participants who had at least used Kinect for
gaming or development were slightly less generous, but still
provided ratings in the range of 4 to 5.

We wondered to what extent users would want to use XD-
Kinect in the future considering their previous background
knowledge and the XDKinect development experience. Most
participants were positive about this and, independent of pre-
vious Kinect experience, provided mostly high ratings be-
tween 4 and 5.

Apart from these ratings, participants were also asked to com-
ment and make suggestions on future versions of XDKinect.
Whilst not everyone provided additional feedback, the re-
ceived comments were helpful for the overall assessment and
identifying current drawbacks. The written feedback was
analysed, grouped and ordered by frequency as in Table 2.

Comment Count
Easy to use 5
More built-in gestures 3
Ability to define custom gestures 3
Documentation is too concise 2
Visual notification when Kinect detects the user 1
Server-side GUI to disable certain streams 1

Table 2. Users’ comments and feedback

In summary, the overall feedback from the study was very
promising. Both ease of use and effectiveness were consis-
tently rated very high. In particular, 5 out of 12 participants
praised XDKinect for its ease of use. The initial documenta-
tion was sufficient for all participants to complete all tasks.
Still, there is room for improvement. The main criticism
was the limited gesture support for both built-in gestures and
the ability to define custom gestures. Currently, XDKinect
only supports KinectInteraction gestures from the official Mi-
crosoft Kinect SDK. Given the flexible architecture and sup-
port for extensibility of XDKinect, gesture support could be
enriched in two ways. First, the server-side could be extended
with built-in gestures based on advanced gesture recognition
algorithms for static and dynamic template matching and pat-
tern recognition. Second, the client-side could be extended
using simpler techniques similar to the $1-family of stroke
recognisers [17]. Both support using custom templates.

CONCLUSION
In this paper, we presented XDKinect, a lightweight toolkit
that facilitates the development of cross-device applications
using Kinect to track interactions and respond accordingly.

The framework is adaptable to different application require-
ments and can be extended on both the client and the server
side. XDKinect uses an event-driven architecture, where
clients subscribe for information required from the server
connected to a Kinect. We approached the task of develop-
ing XDKinect by re-implementing several example applica-
tions described in the literature, and also extending them with
features to enable cross-device interaction, and attempting to
eliminate the major technical challenges that developers cur-
rently encounter while building such applications.

Discussion
Despite the availability of several frameworks and open-
source projects such as Kinected Browser [5], KinectJS and
DepthJS, the idea of using whole-body gesture and speech
commands as primary user input is still rarely implemented in
existing applications. We argued that there are several issues
and generally believe that there is a need for better experi-
mentation methods and tools. One of the strongest features of
XDKinect is its simplicity. As our study demonstrated, users
found XDKinect’s APIs intuitive and easy to use. Since XD-
Kinect directly builds on web technologies, developers will
benefit from existing experience in web languages and tools
and be able to rapidly design and develop interactive cross-
device applications. As Kinect is at the core of our frame-
work, a number of new input dimensions are available to XD-
Kinect applications that may better describe the use context
in terms of users, devices and the environment.

Existing frameworks served as a source of inspiration for XD-
Kinect. For example, [1] exploiting facets of proxemic in-
teraction prompted us to introduce the stand-by and inter-
active zones for the ambient display scenario, where XD-
Kinect takes cues from the user’s distance to Kinect. More-
over, cross-device interaction techniques can be implemented
with only little effort due to the flexible architecture and
message-exchange protocol. We assessed the role of XD-
Kinect in the context of existing research. Table 3 presents
key concepts, available features and supported interaction di-
mensions of selected projects extracted from the papers and
proof-of-concept implementations if available. However, our
idea was not to prove that one solution is better than the other.
Rather, we wanted to review and compare available frame-
works. This means that if a certain feature is not supported by
a framework, the lack thereof may not necessarily be consid-
ered a shortcoming. Moreover, while they share many prin-
ciples and concerns, it is difficult to perform a direct com-
parison between each solution in terms of power and expres-
siveness and the types of applications that can be constructed.
For example, frameworks such as Proxemic Media Player [1]
and Interactive Ambient Displays [16] require special motion
tracking hardware, whereas Kinected Browser [5] and XD-
Kinect use Kinect as primary interaction medium.

An ‘x’ stands for a supported feature (partial or complete),
while ‘–’ denotes the absence of a feature. All listed frame-
works support interaction for more than one user. Device-to-
device awareness, i.e. knowledge about identity, position and
orientation of other devices in the environment, is best sup-
ported by proxemic interaction frameworks. Only a small set

cr
os

s-
de

vi
ce

co
m

m
.

de
vi

ce
-d

ev
ic

e
aw

ar
e.

ge
st

ur
e

sp
ee

ch

di
st

an
ce

or
ie

nt
at

io
n

id
en

tit
y

m
ot

io
n

m
ul

ti-
us

er

XDKinect x x x x x – x – x
Kinected Browser [5] – – x x – – x – x
jQMultiTouch [10] – – x – – – – – x
Shared Substance [2] x x x – – – x – x
GroupTogether [7] x x – – x x x – x
Interact. Ambient Dis. [16] – – x – x x x x x
Proximity Toolkit [6] x x – – x x x x x
Proxemic Media Player [1] – x – – x x x x x

Table 3. Main features of XDKinect and other frameworks

of frameworks support cross-device communication similar
to XDKinect. Also, the combination of supporting both ges-
ture and speech input still seems to be a relatively rare feature,
as it is incorporated only in XDKinect and Kinected Browser.
However, both support only a subset of user-related prox-
emic interaction principles compared to Proximity Toolkit
and GroupTogether. These applications make use of ad-
vanced motion tracking systems or multiple Kinects and can
thus react on velocity and acceleration of user movement.
They also leverage user identity for personalisation and safe-
guarding as in the Proxemic Media Player. Enhancing XD-
Kinect with a richer proxemic API would in principle be pos-
sible and allow for a number of exciting use scenarios, but is
currently constrained by the technical limitations of Kinect.

Limitations and Future Work
While XDKinect offers a solid base for a variety of cross-
device interactive applications, a number of restrictions apply.
Several limitations of the implementation stem from the un-
derlying Kinect hardware and utilised libraries. First, gesture
recognition currently manifests in a high rate of false posi-
tives. For example, a half-open hand is often interpreted as
a grip gesture. Second, XDKinect does not support a dic-
tation mechanism for speech recognition, so the vocabulary
to be recognised must be conveyed to the application in ad-
vance. As mentioned previously, the multi-modal API relies
on the Microsoft.Speech library. Its counterpart, the Sys-
tem.Speech library, permits free text dictation. However, us-
ing System.Speech in conjunction with Kinect SDK results
in error prone recognition, since only Microsoft.Speech API
possesses a language pack specifically calibrated for Kinect
hardware characteristics. A further restriction of XDKinect
is the ability to track only two people in detail. One possible
solution for this shortcoming would be to extend the server-
side to receive data from two Kinect sensors, but these then
need to be positioned at a specific angle to avoid interference,
which may be in conflict with intended interaction zones.

Other limitations concern features that XDKinect’s APIs cur-
rently lack. As pointed out in the user study, XDKinect of-
fers only a restricted set of built-in gestures and no API for
defining custom gestures. To alleviate this shortcoming, the
server-side module could be extended to recognise a set of
popular gestures, such as swipe, zoom or clap hands, while
the client-side component could be extended with an interface
for user-defined gestures. In the future, we plan to incorporate

solutions from other Kinect research, e.g. for more efficient
multi-modal input in speech and gesture interfaces [3], into
the framework. In principle, any technique based on the stan-
dard Kinect SDK could be integrated with XDKinect. Addi-
tionally, our proxemic API could be extended to accommo-
date modalities suggested by [1]. The new Kinect sensor to
be released in the near future appears to provide sufficient
data required for determining user and device orientation and
measuring velocity and acceleration.

In summary, despite some limitations, XDKinect is already
able to support a rich set of cross-device interactive applica-
tions exploiting a variety of user and device interaction di-
mensions. The immediate future work comprises systematic
performance evaluations and collecting more user feedback
to continue improving the development experience. To this
end, we have started to embed XDKinect in several student
and research projects with promising initial results.

Acknowledgements
We thank the anonymous study participants for their time and
feedback. Special thanks to Alexander Huber and David Ott
for their support in developing and evaluating XDKinect.

REFERENCES
1. Ballendat, T., Marquardt, N., and Greenberg, S.

Proxemic interaction: designing for a proximity and
orientation-aware environment. In Proc. ITS (2010).

2. Gjerlufsen, T., Klokmose, C. N., Eagan, J., Pillias, C.,
and Beaudouin-Lafon, M. Shared Substance:
Developing Flexible Multi-Surface Applications. In
Proc. CHI (2011).

3. Hoste, L., and Signer, B. SpeeG2: A Speech- and
Gesture-based Interface for Efficient Controller-free
Text Entry. In Proc. ICMI (2013).

4. Jetter, H.-C., Zöllner, M., Gerken, J., and Reiterer, H.
Design and Implementation of Post-WIMP Distributed
User Interfaces with ZOIL. IJHCI (2012).

5. Liebling, D. J., and Morris, M. R. Kinected Browser:
Depth Camera Interaction for the Web. In Proc. ITS
(2012).

6. Marquardt, N., Diaz-Marino, R., Boring, S., and
Greenberg, S. The proximity toolkit: prototyping
proxemic interactions in ubiquitous computing
ecologies. In Proc. UIST (2011).

7. Marquardt, N., Hinckley, K., and Greenberg, S.
Cross-device interaction via micro-mobility and
f-formations. In Proc. UIST (2012).

8. Melchior, J., Vanderdonckt, J., and Roy, P. V. A
Model-Based Approach for Distributed User Interfaces.
In Proc. EICS (2011).

9. Morris, M. R. Web on the Wall: Insights from a
Multimodal Interaction Elicitation Study. In Proc. ITS
(2012).

10. Nebeling, M., and Norrie, M. C. jQMultiTouch:
Lightweight Toolkit and Development Framework for
Multi-touch/Multi-device Web Interfaces. In Proc. EICS
(2012).

11. Nebeling, M., Zimmerli, C., Husmann, M., Simmen, D.,
and Norrie, M. C. Information Concepts for
Cross-Device Applications. In Proc. DUI@EICS (2013).

12. Olsen Jr., D. R. Evaluating User Interface Systems
Research. In Proc. UIST (2007).

13. Paternò, F., and Santoro, C. A Logical Framework for
Multi-Device User Interfaces. In Proc. EICS (2012).

14. Pierce, J. S., and Nichols, J. An Infrastructure for
Extending Applications’ User Experiences Across
Multiple Personal Devices. In Proc. UIST (2008).

15. Rekimoto, J. Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments. In
Proc. UIST (1997), 31–39.

16. Vogel, D., and Balakrishnan, R. Interactive Public
Ambient Displays: Transitioning from Implicit to
Explicit, Public to Personal, Interaction with Multiple
Users. In Proc. UIST (2004).

17. Wobbrock, J. O., Wilson, A. D., and Li, Y. Gestures
without Libraries, Toolkits or Training: A $1 Recognizer
for User Interface Prototypes. In Proc. UIST (2007).

	Introduction
	Background
	Proxemic and Ambient Interaction
	Multi-Device User Interfaces
	In-Browser Kinect Applications

	XDKinect
	Time-based API
	Multi-modal API
	Proxemic API
	Cross-Device Communication API
	Settings API

	Implementation
	Applications
	Scrapbook
	Fotobook

	Evaluation
	Method
	Results

	Conclusion
	Discussion
	Limitations and Future Work

	REFERENCES

