
Kinect Analysis: A System for Recording, Analysing and
Sharing Multimodal Interaction Elicitation Studies

Michael Nebeling1∗, David Ott and Moira C. Norrie2

1 Human-Computer Interaction Institute, Carnegie Mellon University
2 Department of Computer Science, ETH Zurich

nebeling@cmu.edu, norrie@inf.ethz.ch

ABSTRACT
Recently, guessability studies have become a popular means
among researchers to elicit user-defined interaction sets in-
volving gesture, speech and multimodal input. However, tool
support for capturing and analysing interaction proposals is
lacking and the method itself is still evolving. This paper
presents Kinect Analysis—a system designed for interaction
elicitation studies with support for record-and-replay, visual-
isation and analysis based on Kinect’s depth, audio and video
streams. Kinect Analysis enables post-hoc analysis during
playback and live analysis with real-time feedback while
recording. In particular, new visualisations such as skeletal
joint traces and heatmaps can be superimposed for analysis
and comparison of multiple recordings. It also introduces
KinectScript—a simple scripting language to query record-
ings and automate analysis tasks based on skeleton, distance,
audio and gesture scripts. The paper discusses Kinect Analy-
sis both as a tool and a method that could enable researchers
to more easily collect, study and share interaction proposals.
Using data from a previous guessability study with 25 users,
we show that Kinect Analysis in combination with Kinect-
Script is useful and effective for a range of analysis tasks.

Author Keywords
multimodal interaction recording, visualisation and analysis;
tools for guessability studies; Kinect Analysis.

ACM Classification Keywords
H.5.2. User Interfaces: Input devices and strategies; Evalua-
tion/methodology.

INTRODUCTION
Recent guessability studies have produced a wide range of
user-defined interactions including touch gestures for surface
computing [14, 19], gestures for deformable displays and

∗ Michael Nebeling conducted this research while at ETH Zurich.
He is now affiliated with Carnegie Mellon University and funded by
a Swiss NSF Advanced Postdoc.Mobility grant, P300P2 154571.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EICS’15, June 23 - 26, 2015, Duisburg, Germany
Copyright 2015 ACM 978-1-4503-3646-8/15/06$15.00.
DOI: http://dx.doi.org/10.1145/2774225.2774846

mixed-reality environments [24, 27], motion gestures with
mobile devices [21], as well as cross-device gestures [22,
23]. The principal method of showing the effect of a ges-
ture and then prompting users for the cause by thinking aloud
and demonstrating suitable gestures underlying most studies
was popularised by Wobbrock et al. [28]. It has since been
adapted for many different interaction modalities including
full-body, speech-based and multimodal interactions. For ex-
ample, Morris’s Web on the Wall study [12] collected user-
defined interactions for web browsing in a living room TV
setting around Kinect. However, rather than actually using
Kinect, Wizard of Oz was employed and common browser
functions demonstrated to elicit full-body gestures and speech
commands that could have triggered them. Next to the chal-
lenges associated with collecting and analysing data using the
method are challenges in applying the method itself to obtain
unbiased interaction proposals [13] as well as issues in repro-
ducing and sharing user-defined interaction sets [16].

This paper presents Kinect Analysis—a user interaction anal-
ysis system based on Kinect. The idea is that a Kinect sen-
sor and Kinect Analysis are used for capture and analysis,
without having to rely on video analysis or develop custom
experiment software, which many previous studies required.
Kinect Analysis was primarily designed for studies in the lab
on Kinect-based systems [6, 8] and elicitation exercises [11,
12], but we also discuss how it could cater to other types of
studies involving multiple users and different devices.

Our work offers three main contributions: 1) Kinect Analy-
sis as a tool: Our system uses multiple annotated timelines
for analysing and comparing Kinect recordings. In the con-
text of an analysis, user-defined parts of a recording can be
manually annotated and labelled. Annotations can also be
generated automatically by log file parsers and scripts. Two
analysis modes are available: live analysis while recording
and post-hoc analysis during playback. During recording or
playback, joints can be displayed selectively so that joints that
are not important for certain movements or gestures can be
suppressed. Joint movements can also be visualised using
traces and heatmaps. 2) KinectScript: We introduce Kinect-
Script for querying Kinect recordings using a combination of
skeleton, distance, audio and gesture scripts and automating
coding and analysis tasks. 3) Kinect Analysis as a method:
Based on these innovations, we explore the benefits and lim-
itations of using Kinect Analysis. We focus on the evaluation
of Kinect Browser [16], a new Kinect-based system devel-
oped based on Morris’s guessability study [12].

BACKGROUND AND REQUIREMENTS
Designing and conducting user studies around natural user
interfaces remains a major challenge for two main reasons.

First, rather than traditional mouse and keyboard input that is
easy to track, the body is used as input [10]. A system under
evaluation is usually only able to track correctly performed
gestures and speech commands. Recording all user interac-
tions is required to detect commands that were intended, but
not recognised. It is therefore either necessary to build special
experiment software or record video.

Second, once the user interactions have been recorded,
analysing the collected data poses another challenge. Video
analysis is a common method involving transcription and an-
notation of video recordings [4]. Video data is very rich and
contains a lot of information—often several passes through
the data are required. Hence, manual annotation and review-
ing of video sequences is time-consuming and cumbersome.
Automated video analysis is difficult and only feasible for
specific application areas and predefined user interactions.

The design of Kinect Analysis was driven in two ways. First,
we conducted a systematic review of existing tools and liter-
ature on previous studies to analyse common requirements,
analysis tasks and workflows. Second, we carried out Kinect-
based and guessability studies as part of our own research.

To the best of our knowledge, there is no dedicated tool for
analysing and comparing user interactions based on Kinect.
DejaVu [9] is an IDE extension that enables programmers to
easily record, review, and reprocess temporal data to itera-
tively improve the processing of Kinect camera input. De-
jaVu uses a canvas to visually and continuously monitor the
inputs, intermediate results, and outputs of computer vision
processing techniques. While useful to developers, it does
not share our goal of supporting evaluators in the analysis
process. MAGIC [1] is a motion gesture design tool that pro-
vides facilities for experimenting with motion gestures. A
key feature of MAGIC is retrospection, allowing designers to
review previous actions by visualising recorded gestures and
making a video recording available. GestureAnalyzer [7] pro-
vides support for interactive hierarchical clustering of gesture
data based on multiple-pose visualisations. It shares Kinect
Analysis’ vision to support researchers in performing elicita-
tion studies, yet it is limited to gesture analysis tasks.

We designed Kinect Analysis as an extensible record-and-
replay tool for gesture, speech and multimodal interactions.
In addition to an extensible set of visualisations such as skele-
tal joint traces and heatmaps, it supports scripting of complex
analysis tasks involving multimodal interactions in a declar-
ative manner based on KinectScript. While we could not try
out the tools listed above, we believe that they are comple-
mentary to, and quite powerful when used in combination
with, Kinect Analysis. One limitation of GestureAnalyzer,
for example, is that it requires a specific gesture data format,
where gestures start and end with a natural standing pose.
This seems to be quite limiting, especially for user-driven
elicitation studies. To mitigate this, Kinect Analysis could
be used for recording and initial coding. After segmentation

and annotation with Kinect Analysis, gesture data could be
exported to GestureAnalyzer where it may be processed fur-
ther for hierarchical clustering and identification of descrip-
tive features in user-defined gesture sets.

Also related to Kinect Analysis are tools for qualitative video
analysis. The conventional approach of video analysis con-
sists of watching a video sequence with a media player
while taking notes using a spreadsheet application or the like.
VACA [2] integrates both video viewing and annotation into
one system. It provides video timeline annotations that can
also be imported from logs to improve the rate at which
video analysis can be performed. ChronoViz [3] is a more
general tool for navigating, visualising and inspecting mul-
tiple streams of time-coded data that recently added support
for Kinect recordings [26]. Kinect Analysis introduces new
visualisations and tools for automating analysis tasks based
on Kinect’s skeletal tracking and speech recognition, allow-
ing evaluators to keep track of previously performed analysis
tasks and share their Kinect data and analyses with others.

Studies we have taken into account range from gesture-
based [5, 14, 19], to multi-device [22, 23], to Kinect-based
studies [11, 12, 25]. We can observe a proliferation of guess-
ability studies for different kinds of situations and settings.
Common to most studies is that they employ the think-aloud
protocol, often complemented by log files and video analy-
sis, as suggested in the original study design of Wobbrock et
al. [28]. Although most studies involve devices with different
kinds of input tracking sensors, only a few actually made use
of recognisers [16, 20] and many required the development
of custom experiment software [15, 21]. Researchers are still
experimenting with the method itself to overcome potential
biases. A recent proposal is controlling and stimulating the
production of interaction proposals, priming participants and
using partners in elicitation exercises [13]. It is common to
report user agreement scores and develop taxonomies often
illustrated with sketches or scene stills of interaction propos-
als. However, so far little has been done to record and share
data in a format more practical for direct comparison, repro-
duction and implementation. One exception is the previously
conducted Kinect Browser study [16].

Kinect Browser is a Kinect-based multimodal web browser.
Informed by Morris’s Web on the Wall study [12], Kinect
Browser implements 10 common browser functions and
recognition code for 9 gestures and 16 speech commands.
The study involved 25 participants and was divided into three
tasks. Task 1 was essentially a guessability study based on
Morris’s study design. Wizard of Oz was employed to col-
lect interactions proposals for the 10 browser functions. Task
2 was similar to Task 1, but instead of the Wizard, Kinect
Browser was used and stepwise configured to react to pre-
ferred interactions. Finally, during Task 3, participants used
their preferred interactions to browse a web site for planning
a trip over the weekend. All three tasks were recorded and
analysed using an earlier version of Kinect Analysis. Kinect
Browser was extended to produce user logs for successfully
recognised gestures and speech commands and the triggered
browser functions. Task 3 was also recorded on camera.

The study had multiple goals: (1) it was interested in finding
out about the proportion of gesture, speech and multimodal
commands proposed for controlling the browser, (2) by di-
viding the elicitation exercise into two parts using Wizard of
Oz in Task 1 and Kinect Browser in Task 2, it wanted to in-
vestigate the effects of using recognisers in guessability stud-
ies, (3) it wanted to investigate user agreement in terms of
Morris’s consensus metrics [12] and compare preferred inter-
actions to her study. Moreover, in the context of this paper, it
serves as a running example and provided a basis for our com-
parison of macro-level video analysis to KinectScript-based
analysis in terms of the process, efficiency and quality of re-
sults, which we report later. The researchers also wanted to
release the code and data to allow the community to easily
build on the results, which motivated means for sharing.

Based on this review and our own experience, we devised the
following requirements for Kinect Analysis.

(R1) Timeline-based data navigation and annotation
Common to all analysis tools including ours is that they man-
age, process and visualise time-coded data as well as provid-
ing means for annotating the timeline. It is also possible to
incorporate external data sources such as log files.

(R2) Integration and visualisation of Kinect data
Not all tools can record data, but most handle a variety of in-
put streams and some added support for Kinect. Like DejaVu,
Kinect Analysis can record all Kinect data streams. It adds
joint traces and heatmaps to typical skeleton visualisations.

(R3) Control over Kinect parameters
To accommodate different study settings, Kinect’s tilt angle,
joint filtering, skeleton selection and tracking mode must be
maintained. Skeleton selection is required for multi-user set-
tings and the tracking mode for full-body/seated gestures.

(R4) Feedback on Kinect tracking quality
When recording Kinect, tracking quality is important. Kinect
Analysis produces statistics on inferred vs. tracked joints.
This gives live feedback to study facilitators and the statis-
tics may also be correlated to participant feedback [16].

(R5) Organisation of recordings and analyses
Kinect Analysis supports tagging of entire recordings and or-
ganising them into multiple analyses, while results can be
stored and retrieved later. Although being crucial for video
analysis [4], retrospection was so far unique to MAGIC.

(R6) Detection of gestures and speech commands
Like DejaVu, Kinect Analysis processes Kinect’s depth data
to detect predefined gestures using Kinect’s default or custom
recognisers. Kinect Analysis can also recognise predefined
speech commands and mulimodal interactions.

(R7) Metrics for coding interaction proposals
Important for guessability studies is user agreement [28] and
taking note of preferred interactions in the case of multi-
modal synonyms [12]. Our KinectScript enables querying and
declarative coding by skeleton, distance, gesture and speech.

(R8) Auto recording, tagging and labelling
Kinect Analysis can produce recordings on skeleton detec-
tion and also generate tags and labels when gesture, speech
or multimodal commands are detected. This is useful for pro-
duction phases in elicitation exercises [13].

(R9) Comparison of multiple recording sequences
Kinect Analysis supports simultaneous playback of two
Kinect recordings and allows analysis tasks to be carried out
across multiple recordings. This is again important for deter-
mining user agreement in guessability studies.

(R10) Sharing of recordings and reproduction of analyses
All data recorded and analysis tasks created with Kinect
Analysis can be exported to external formats (MP4 video,
MP3 audio, JSON Kinect data, CSV/PNG analysis data).
They can be reimported or processed using external tools.

KINECT ANALYSIS
In this section, we describe the Kinect Analysis system and
give more details on how its design caters for each require-
ment. Figure 1 shows the main components. Kinect Analysis
is based on a client-server architecture. We decided to imple-
ment a web-based client so that Kinect Analysis can be ac-
cessed and controlled from any web-enabled device. Impor-
tantly, the client used for analysis can be different from the
one used for recording, which gives more flexibility during
evaluations and allows researchers to have shared access and
easily exchange data. The client can be used to view existing
recordings and analyses, create new ones and configure the
aforementioned Kinect parameters. It also implements dif-
ferent visualisers which we detail below. The server is com-
posed of four main components: replay system, Kinect data
recorder, KinectScript processor and database. The server ac-
cesses gesture and speech recognisers and the Kinect itself.
Our implementation uses Kinect Interactions and Windows
system speech service as default recognisers, but, as will be
discussed later, it is possible to provide custom recognisers.

Figure 1. Architecture of Kinect Analysis system

The remainder of this section introduces the main features of
Kinect Analysis and is structured into three parts: (1) record-
ing and visualising multimodal interactions, (2) coding and
comparing interaction sets, and (3) sharing data and analy-
sis tasks. To illustrate the usage, we include statements in
italics on how the features were used for the Kinect Browser
study [16] introduced earlier.

Recording and visualising multimodal interactions
Kinect Analysis allows all Kinect data streams to be recorded.
Kinect’s skeleton and audio streams are recorded per default.
The skeleton stream tracks the location and direction of joints

Figure 2. Player showing a recording containing two skeletons; lower
body parts excluded via joint selection.

over time. If more details are required, recordings of Kinect’s
depth, colour and infrared streams can be included.

For the Kinect Browser study, skeleton and audio streams
were recorded with Kinect Analysis. Compared to video, this
provides compact data that has the advantage that the pri-
vacy of recorded humans is preserved and no post-processing
required before sharing the data in order to conceal faces or
other sensitive data that would be visible on video.

Kinect Analysis supports two modes of recording new se-
quences: manual recording and auto recording. In manual
recording mode, Kinect Analysis creates a new sequence and
continuously records all selected data streams until a button to
stop recording is pressed. All recorded data is then stored in
one single recording. However, this can mean that a record-
ing will be produced even if no skeleton was detected. In
contrast, the auto mode only records as soon and as long as
at least one skeleton is detected. When all skeletons leave
the Kinect’s field of view, the current recording is finished
and added to the stored recordings. The auto mode remains
active and additional recordings will be created with a new
skeleton being recognised. Auto recording prevents wasting
recording time and storage space. It facilitates unsupervised
studies where a Kinect device is deployed to capture interac-
tions without a study facilitator being present. However, it
also supports study facilitators in that they must not ensure
for every participant that the device is in fact recording.

Since the Kinect Browser study involved three tasks collecting
feedback through post-task questionnaires, a mix of manual
recording between tasks and auto recording within tasks were
used. For easy lookup, recordings were named with the par-
ticipant ID and tagged according to the task of the study. In
total, 23+23+23 recordings were created for the three tasks
and 25 participants. Unfortunately, there was a technical
problem with one recording, three times the study facilitator
accidentally did not record the next task, one recording was
started late and one was cancelled.

Figure 3. The interface contains controls and timelines for two record-
ings, here 163 (green) and 153 (blue). Playback of each recording can
be controlled and timeline sequences annotated. Manual annotations
(black) and detected gestures (blue) and speech commands (red) are
coded on separate timelines grouped with each recording.

The player is clearly the heart of Kinect Analysis. It ren-
ders Kinect’s skeleton and video data and provides features
for controlling playback, annotating recordings and perform-
ing analyses. It consists of a large canvas and several con-
trols for visualisation (Figure 2) as well as a timeline inter-
face (Figure 3). The canvas not only shows skeletal data, but
also conveys tracking information. Besides colour coding of
tracked and inferred joints, the percentage of tracked joints
is displayed. The timeline sections dropdown above the can-
vas can be used to select one or more sequences for playback.
This is practical for re-watching and in-depth analysis. More-
over, joint selection is useful to focus on certain body parts.

The Kinect Browser study was conducted in a controlled envi-
ronment with seated participants. Seated tracking mode and
only joints pertaining to the upper body were selected.

Coding and comparing interaction sets
Kinect Analysis supports two modes of analysis: live analysis
and post-hoc analysis. Both are conducted in realtime. Live
analysis creates visualisations or timeline annotations while
recording, but is limited to the current recording. Post-hoc
analysis does so during playback of existing recordings, and
can involve multiple sequences from different recordings.

For the Kinect Browser study, a mix of live analysis for auto
coding the predefined 9 gestures and 16 speech commands
and post-hoc analysis for all interaction proposals that were
not detected by the system were used. Below are some results.

The timeline interface shown in Figure 3 not only indicates
playback progress and supports seeking through recordings,
but also allows timeline sequences to be annotated. As a com-
mon requirement, manual annotation of sequences of arbi-
trary length is supported by the system. Tags can be added
to label the timeline sections. Automatic annotation is sup-
ported in two ways. First, it is possible to import log files
created by external software. Second, Kinect Analysis can
detect predefined gestures and speech commands. We will
explain later how new commands can be added to the system.

Figure 3 shows an example from the Kinect Browser study
where flick hand gestures and “back” or “forward” speech
commands are marked in different colours. Here, the timeline
interface gives a first visual impression of the gesture/speech
ratio which can be interesting for analysis of multimodal syn-
onyms [12]. Manual annotations were created for interaction
proposals that could not be detected by the recognisers.

(a) A trace configuration can include one or two recordings and a selected number of joints. A colour picker is provided to choose a trace colour
for each recording. The right side shows a list of defined trace configurations.

(b) Script editor for writing new scripts using our KinectScript scripting language. The colour picker defines the colour of timeline annotations
generated by the script. The right side shows a list of defined scripts, e.g. skeleton gesture flickleft for marking flick hands gestures in red.

Figure 4. The analysis toolbar is used for managing trace, heatmap and script configurations that can be applied to analyse recordings.

Kinect Analysis implements three different analysis tasks:
traces, heatmaps and scripts written in KinectScript—our
scripting language for querying recordings and declaring cus-
tom analysis tasks as detailed in the next section. Traces and
heatmaps were implemented as two visualisation techniques
for analysing joint movements. Traces depict the location his-
tory of one or more data points over time. On the other hand,
heatmaps are commonly used for visualising three dimen-
sional data—two dimensions represent x and y coordinates
and the third dimension is used for showing the frequency of
a data point in relative comparison to the absolute minimum
and maximum of the dataset. In Kinect Analysis, data points
are coordinates of selected joints. To indicate the frequency
in heatmaps, red (hot) is used for maxima and blue (cold) for
minima. Thus, areas that were more frequently covered ap-
pear more red and less frequently covered areas more blue.

For the Kinect Browser study, traces and heatmaps were cre-
ated at a per-gesture level for selected participants to anal-
yse movements and the role of hands. In addition, scripts
were defined for coding gestures, speech commands and mul-
timodal interactions. See the video and supplementary mate-
rial accompanying the paper for more details on this.

Sharing data and analysis tasks
Heatmaps, traces and scripts can be configured in a toolbar.
For example, traces can be configured to include selected
joints of one or two recordings (Figure 4(a)). A different
colour can be associated with each recording so that the traces
originating from the different recordings can be distinguished
based on colour-coding. While traces and heatmaps gener-
ate essentially an image, scripts generate timeline annotations
that indicate when a certain event occurred. The analysis de-
tails view combines associated recordings and generated re-
sults in collapsible sections (Figure 5). For comparison, mul-
tiple traces and heatmaps can be superimposed on the player
canvas. Timeline annotations of two recordings can be exam-
ined via the timeline interface (Figure 3).

Figure 5. Heatmaps section with thumbnail previews of previously cre-
ated heatmaps. Similar previews are available for traces, while previews
of script outputs show colour-coded timeline annotations.
The main analyses of the Kinect Browser study required 2
trace configurations and 2 heatmap configurations for track-
ing movements of the left and right hand, respectively. Ad-
ditional scripts were defined for coding the 9 gestures, 16
speech commands, and 2 multimodal interactions involv-
ing both gesture and speech. These scripts allowed the re-
searchers to automatically annotate a good number of inter-
action proposals. However, due to some limitations discussed
later, manual annotation was still required to catch all sug-
gested multimodal interactions and label them properly.

Script Type Structure Example
Skeleton Script skeletonIdentifier.joint positionKeyword skeletonIdentifier.joint handright above head

skeleton1.handleft above skeleton1.spine
Distance Script skeletonIdentifier distanceKeyword value skeleton1 closer 1.0

skeletonLeft closer 2.0
skeleton1.handleft closer 2.0

skeletonIdentifier|skeletonIdentifier distanceKeyword value skeleton1|skeleton2 closer 2.0
recording1.skeleton1|recording2.skeleton1 farther 1.0

Audio Script skeletonIdentifier says speechTerms skeleton1 says next
skeleton1 says back,go back

Gesture Script skeletonIdentifier gesture gestureName skeleton1 gesture flickleft
skeleton1 gesture flickright

Combined Script script1 and script 2 skeleton1 says next and handright above head
script1 or script2 skeleton1 says next or skeleton1 gesture flickleft

Figure 6. Overview of KinectScript with examples on how to construct scripts of a certain type

recordingIdentifier positionKeyword joint HandRight ShoulderLeft
recording1 above AnkleLeft Head ShoulderRight
recording2 below AnkleRight HipCenter Spine
skeletonIdentifier leftof ElbowLeft HipLeft WristLeft
skeleton1 rightof ElbowRight HipRight WristRight
skeleton2 distanceKeyword FootLeft KneeLeft gestureName
skeletonLeft closer FootRight KneeRight grip
skeletonRight farther HandLeft ShoulderCenter push

Figure 7. Supported keywords in KinectScript

A key feature of Kinect Analysis for sharing is that it man-
ages recordings and analyses separately. The benefit is that
the same recording can be subject of multiple analyses and
different analysis tasks and generated outputs can be stored
and retrieved together with each analysis. For example, the
same recording can have different annotations when it occurs
in different analyses. Configurations are globally defined via
the toolbar and can thus be reused not only between analysis
tasks pertaining to the same study, but even between studies.

For each of the 25 participants in the Kinect Browser study, a
new analysis was created and associated with the recordings
from each task. For selected pairs of participants, additional
analyses using traces and heatmaps were created post-hoc
involving only Task 2 and Task 3 recordings.

IMPLEMENTATION
The client is implemented using HTML5, CSS3 and
JavaScript in combination with the jQuery library. The server
is implemented in C# using a MySQL database for storage
and retrieval of data streams and the Kinect SDK 1.8 to in-
teract with the Kinect sensor. Client and server communicate
via the WebSocket protocol and exchange data using JSON.

KINECTSCRIPT
The main idea behind KinectScript is to provide means for
querying recordings based on scripting expressions that may
evaluate to true and annotate the timeline depending on con-
ditions or events that occur. We designed KinectScript to be
simple, modular and extensible. As a proof of concept, we
focused on exploring different types of scripts and their po-
tential, rather than developing a full-fledged language.

Our KinectScript implementation supports scripts of four dif-
ferent types (Figure 6): 1) Skeleton scripts consider rela-
tive positions of joints. Using skeleton and joint identifiers
(Figure 7), a relation between two joints can be formulated

and will be evaluated with respect to the current joint posi-
tions. 2) Distance scripts can be used to measure the distance
from skeletons to the Kinect or between skeletons. 3) Audio
scripts search for expressions in recorded speech. 4) Gesture
scripts can be used to recognise predefined gestures.

KinectScript also supports scripts that involve two recordings.
Scripts can be combined using conjunction and or disjunc-
tion or. Other logical connectives such as negation not and
parantheses to control order of precedence could be added in
the future by extending the language and our implementation.

Skeleton Scripts
Skeleton scripts define relations between joints. An example
for a skeleton script is leftHand above head. It evaluates
to true if the left hand of a skeleton is above the head. As
no skeleton identifier is specified, all skeletons in a recording
will be considered. Two different skeleton identifiers are im-
plemented so far. Skeletons can be identified by tracking ID
(e.g. skeleton1 for the first tracked skeleton) or by position
(e.g. skeletonLeft for the skeleton left of another skeleton).
Others (e.g. by distance or by colour) could be added later.

Distance Scripts
Two subtypes of distance scripts are supported. The first eval-
uates the distance between a joint of a skeleton and the Kinect
sensor. The spine is used if no joint is specified. Distance val-
ues are in metres. For example, the script skeleton1 closer
1.0 returns true if the distance between the first skeleton’s
spine and the Kinect is less than one meter. The second sub-
type evaluates the distance between the spines of two skele-
tons. The skeletons can either be in the same recording or
in two different recordings. For example, using the | opera-
tor as in recording1.skeleton1|recording2.skeleton1 far-
ther 1.0 compares the distance between the first skeleton in
a recording on timeline 1 and the first skeleton in a recording
on timeline 2, and returns true if it is less than 2 metres. New
subtypes could be added in the future, e.g. distance between
two joints or between skeletons and a fixed reference point.

Audio Scripts
Audio scripts search for recognised terms within recordings.
As an example, the script skeleton1 says back,forward
searches for the terms “back” or “forward”. Alternative terms
are separated by comma and terms composed of multiple

Click Link dwell click/grip push/press othergesture "link #" "link title" multimodal Gesture Speech
Total Task 1 3 15 11 6 1 8 14 35 9
Total Task 2 7 23 9 7 0 5 5 46 5
Preferred 1 0 11 5 1 0 3 7 17 3
Preferred 2 0 18 1 2 0 3 5 21 3

Figure 8. Kinect Analysis was used in combination with Excel spreadsheets for scoring interaction proposals, here for the Click Link referent.

words by space, e.g. “go back”. Currently, skeleton identi-
fiers are ignored in audio scripts, as speech is recorded inde-
pendent of skeletons. Given Kinect’s microphone array that
can track the direction of sound, it is in principle possible to
correlate the spatial sound information with the physical po-
sition of a skeleton to match only for the specified skeleton.

Gesture Scripts
Gesture scripts test for a certain gesture and evaluate to true
if the specified gesture was detected. The gesture opera-
tor is followed by a keyword reference to a predefined ges-
ture recognition function. Using Kinect Interactions, Kinect
Analysis can detect grip and press hand gestures per default.
An example of a custom gesture script used in the Kinect
Browser study is skeleton1 gesture flickright for detecting
flick hands gestures from left to right. Custom recognition
code can be supplied to the Kinect Analysis server. Gesture
functions are expected to process Kinect’s data streams and
return true if the gesture was successfully recognised. Ges-
ture functions may also return a timespan for marking the be-
ginning and the end of the gesture if it can be segmented.

Script Evaluation
The general method behind script evaluation is to parse a
script and then inspect every single skeleton frame on the
Kinect Analysis server and annotate the timeline position on
the client if the script condition evaluates to true. For exam-
ple, in the case of a custom flickright gesture script, the client
will add a marker to the timeline (blue) and label it with the
gesture keyword “flickright”. For gesture functions returning
a timespan, the respective timeline sequence will be marked
in retrospect. This principle applies to all but audio scripts.

Audio scripts are evaluated as follows. In a first step, a gram-
mar is constructed from the terms contained in the audio
script. In a second step, the Windows system service is used
to perform asynchronous speech recognition on the WAV file
associated with the selected recording, returning position and
confidence levels of the detected words. Once speech recog-
nition is finished, a list of recognised speech objects is se-
rialised to JSON and sent to the client where the results are
marked on the timeline. Hence, audio script evaluation does
not require replaying the entire recording. Moreover, audio
scripts are only evaluated once and then the result is cached.

The same principle also applies when scripts are combined,
e.g. audio and gesture scripts as in skeleton1 says next and
skeleton1 gesture flickleft. For the combined script to eval-
uate to true, the flick hands gesture has to occur within the
range of an audio event. Speech recognition detects the term
“next” at position x in the recording. Currently, true is re-
turned if the flick right gesture was detected within the range
of x± δ where δ is a globally configurable threshold of 2 sec-
onds per default. Future versions of KinectScript could make

such time constraints configurable at a per-script level by
adding new operators, e.g. skeleton1 says next and right-
Hand above head within 3s, for a 3 seconds threshold.

KINECT BROWSER STUDY
Expanding on previous examples from the Kinect Browser
study used in the paper, this section presents in detail how
Kinect Analysis was used for capture and analysis. Note that
our intention here is to illustrate the use of Kinect Analysis
and the role it played in the Kinect Browser study. Readers
interested in the actual results of the study are referred to [16].

Using a dual-monitor setup, a single computer and Kinect
sensor were used for running Kinect Browser and Kinect
Analysis in parallel. The participant’s screen was a ca. 63”
projection surface with 1024x768 resolution showing Kinect
Browser. All interactions as they were tracked by Kinect were
recorded and previewed on the study facilitator’s screen. For
Task 3, a second projector was used to display goals and six
sub-tasks guiding participants through the trip planning sce-
nario. Using the same computer made sure that timestamps
in the user logs generated by Kinect Browser matched those
of the Kinect recordings created using Kinect Analysis.

In preparation for the analysis, Kinect Analysis was cus-
tomised with gesture and speech recognition code from the
Kinect Browser system. The analysis was conducted in three
steps. First, the researchers sequenced Task 1 and Task 2
recordings by the 10 referents, and Task 3 recordings by the
six sub-tasks, and coded each at a per-interaction level. Sec-
ond, CSV data export from Kinect Analysis to Excel spread-
sheets was used for counting interactions and scoring user
agreement according to [12]. Third, an in-depth analysis of
selected recordings made use of specific features of Kinect
Analysis to analyse the use of gesture and speech.

In total, 907 interactions almost equally split between Tasks
1 and 2 were coded. Both tasks involved a production phase
in which participants were prompted for possible gesture,
speech and multimodal commands as well as their overall
preference for each referent. Figure 8 shows an excerpt for
the Click Link referent with the number of total and preferred
interactions broken down by modality. The complete analy-
sis revealed that participants most commonly suggested ges-
ture (Task 1: 65%, Task2: 60%), then speech (Task 1: 31%,
Task 2: 39%), and rarely multimodal interactions composed
of both gestures and speech commands (Task 1: 4%, Task
2: 1%). In Task 3, participants used 84% gesture and 16%
speech for 662 successfully registered browser function calls.

Use of Traces and Heatmaps
In-depth analysis of selected recordings making use of traces
and heatmaps allowed the researchers to make several inter-
esting observations [16]. First, creating heatmaps of hands

ID Length
Kinect Recording

Length
Video Recording

Tracking
Ratio

P8 0:10:23 0:09:31 0.88
P11 0:04:04 0:05:18 0.95
P16 0:09:57 0:11:21 0.68
P22 0:03:56 0:05:34 0.74

Table 1. Selected Kinect and video recordings for comparison

at a per-participant level, the researchers investigated the
use of the dominant hand and how it varied between left
and right-handed participants. Moreover, hand traces cre-
ated per task showed a generally smaller interaction window
for Task 3 where participants attempted to perform gestures
more efficiently. Breaking the traces further down by ref-
erent, the researchers found that participants assigned dif-
ferent roles to hands when switching between referents and
depending on which side of the screen required interaction.
For those participants who experienced poor gesture recogni-
tion, per-gesture traces showed for several attempts that the
intended gesture, in particular, the flick hand gesture for the
Go Back/Forward and the Switch Tab referents, would have
been recognised had they performed a larger hand movement.
At the same time, the analysis revealed some potential for re-
laxing the gesture recognition code by allowing for a smaller
interaction window without necessarily raising the potential
for conflicts with other gestures. Finally, heatmaps alarmed
the researchers that participants accidentally triggered inter-
actions using grip gestures while resting their hands on the
lap or using the armrest without paying attention to that hand.

KinectScript vs. Video Analysis
In the next step, we compared KinectScript against video
analysis using data from Task 3. The idea here was not to
try to show that one method might be better than the other,
but to compare the process, efficiency and quality of results.
We first explain the method before discussing the results.

Method
We selected recordings of four participants: one video record-
ing and one Kinect recording per participant. To test the im-
pact of quality and length of recordings on analyses, we se-
lected two short and two long recordings with high and low
tracking ratios each. Table 1 shows a comparison.

To investigate multimodal synonyms [12], i.e. using gestures
or speech commands to invoke the same browser function, we
performed three analysis tasks on the recordings: 1) Gesture
analysis task: Find all occurrences of flick right gestures. 2)
Speech analysis task: Find all occurrences of “back” com-
mands. 3) Gesture/speech analysis task: Determine ges-
ture/speech ratio of backward and forward interactions such
as flick hands or “go back/forward” for navigating the page
history or “previous/next tab” for switching tabs.

The comparison was conducted in three steps. First, as
ground truth, we conducted macro-level video analysis using
the camera recordings from Task 3. Second, we created ges-
ture and audio scripts using KinectScript and used them for
the three analysis tasks. Third, we aggregated the obtained
results and compared the two methods using the number of
detected events as the main metric. The time taken for each
analysis task was recorded and used as a secondary metric.

ID Method Gesture Speech Gesture/Speech Total

P8 Manual 0 9 11 20
KinectScript 0 5 7 12

P11 Manual 0 4 7 11
KinectScript 0 3 4 7

P16 Manual 8 1 10 19
KinectScript 1 6 7 14

P22 Manual 2 0 15 17
KinectScript 1 1 6 8

Table 2. Detected events for manual vs. KinectScript-based analysis

As commonly suggested, video analysis was performed using
a media player and a spreadsheet application [2], here VLC
and Excel. For Step 1, we only noted flick right gestures, for
Step 2, only back speech events and, for Step 3, both gesture
and speech for all forward and backward interactions. Each
event was recorded together with the timestamp. If required,
the video was paused during analysis, e.g. when many events
occurred close to each other. After the video analysis, record-
ings of Kinect’s skeleton and audio streams were analysed
using the scripts formulated in KinectScript. For the ges-
ture analysis task, a custom gesture script skeleton1 gesture
flickright was used to detect flick right gestures. As already
mentioned, Kinect Analysis was extended to use the same al-
gorithm for detecting flick right gestures as Kinect Browser.
The script skeleton1 says back was used for the speech
analysis task to detect when participants said “back” to in-
teract with Kinect Browser. Finally, for the gesture/speech
analysis task, we used two different scripts. In order to find
all speech-based backward and forward interactions, we used
the script skeleton1 says back,forward,next tab,previous
tab. In addition, we used a second script skeleton1 gesture
flickright or skeleton1 gesture flickleft to detect all forward
and backward gesture interactions. The number of detected
events as generated by the script output was noted.

Results
Table 2 summarises the results obtained for manual and
KinectScript-based analysis. KinectScript only found a frac-
tion of the events—the misses of 8/20 = 40%, 4/11 = 36%,
5/19 = 26% and 9/17 = 53% can be explained as follows.

The gesture scripts were not able to recognise all flick ges-
tures detected with video analysis. This was mainly for two
reasons. First, participants often demonstrated gestures re-
peatedly as Kinect Browser could not detect them on the first
attempt. Since the gesture recognition code was shared with
Kinect Analysis, also KinectScript only caught the gestures
that were finally recognised by Kinect Browser. Second, ac-
cidental triggering of flick gestures, e.g. flickleft recognised
immediately after flickright when returning to normal pose,
produced some false positives. Also Kinect tracking quality
seemed to have an impact on the quality of results. In partic-
ular, the gesture analysis task produced poor results for P16
and P22, which were the recordings with low tracking quality.

As for speech, some false positives were detected due to talk-
ing and background noise. The speech recognition engine
was configured for the English language and talking some-
times occurred in languages other than English, which in-
creased the false matches. In addition, some speech com-
mands could not be recognised because the pronunciation was
not clear or the participant’s voice was too soft.

The largest differences were in the speech analysis tasks with
time savings averaging around 30% using audio scripts. Au-
dio script output using speech recognition was almost imme-
diately available independent of recording length, while man-
ual analysis required the full video to be watched in realtime.

DISCUSSION
We have shown that Kinect Analysis can be useful and effi-
cient in recording and analysing Kinect data. The fact that
KinectScript produced false positives and missed events de-
tected by manual analysis does not mean that it has no added
value compared to conventional tools. In the Kinect Browser
study, it proved to be a very useful tool for initial indexing.
The automated coding of the timeline can save time and boot-
strap the process. It can guide coders in the sense that they
can easily identify the gaps between the timeline annotations
after using KinectScript and streamline the manual analysis
using video. For the Kinect Browser data, doing a first rough
sequencing of the timelines by the referents investigated in
the guessability study, and then refining the coding as well
as performing additional analysis tasks using novel features
such as traces and heatmaps, turned out to be quite effective.
While we have not carried out detailed comparisons, the im-
provements to Kinect with the v2 sensor and SDK 2.0 give
reason to believe that KinectScript could produce better re-
sults than the ones included in the paper.

Kinect Analysis as a method may facilitate new ways of con-
ducting analyses. But there are two limitations to our proof
of concept due to the Kinect sensor and KinectScript.

The first is that our implementation is subject to the limita-
tions of the Kinect sensor and relies on Kinect’s default skele-
tal tracking, which means rather basic gesture detection, no
tracking of fingers, eye gaze, etc. However, the tracking ca-
pabilities and recognition accuracy of Kinect Analysis could
be improved in the future based on its extension mechanisms.
First, with relatively minor changes to the implementation,
the new Kinect sensor with better tracking capabilities could
be used. Second, more powerful motion tracking hardware,
but in principle similar to Kinect, such as Leap Motion or Vi-
con, could be combined with Kinect Analysis. Finally, cus-
tom recognisers that make advanced use of Kinect’s depth
camera for better gesture recognition could be integrated.

The second limitation relates to completeness and expres-
siveness of the KinectScript language. While our proof of
concept explored different types of scripts, future extensions
should address the temporal dimension in more detail. One
example that we already mentioned would be to allow scripts
to specify a certain timespan for detecting the occurrence of
one event close to another event, e.g. by adding a within 2s
keyword for specifying a 2-second threshold. The Kinect
Browser study also raised that it would be practical to use
any coded custom event when formulating combined scripts,
e.g. #goback and skeleton1 gesture flickleft for annotat-
ing flick hand gestures only for the Go Back referent after
first coding at a per-referent level, which we could easily add.

In general, we see Kinect Analysis as a first example of a new
class of tools that make specific use of Kinect to facilitate

user studies. Apart from organising capture and bootstrap-
ping analysis, it could also be valuable as a tool for training
and improving recognisers. We see two possible usage sce-
narios. First, similar to DejaVu [9], pilot studies could be
done with Kinect Analysis before a Kinect-based system is
deployed. Second, as with the Kinect Browser study [16], a
guessability study could be conducted for collecting interac-
tion proposals first before developing required recognisers.

We also believe that Kinect Analysis has the potential to cater
to other kinds of studies than the one in the focus of this paper.
We see the possibility to conduct user studies in public spaces
with Kinect sensors, rather than video cameras, being used
for anonymous recording. Moreover, by extending Kinect
Analysis’ techniques for recording, visualising and analysing
data to other devices, we see great potential for cross-device
studies. To capture all interactions on, around and between
devices, user interaction data recorded on smartphones and
tablets similar to W3Touch [17] could be correlated with data
recorded using Kinect Analysis. This is a promising idea we
have started to explore as part of the XDKinect project [18].

CONCLUSION
In this paper, we have presented Kinect Analysis—a new sys-
tem for user interaction analysis based on Kinect. Rather than
just using video or custom experiment software individually
developed for each study, the idea is that increasingly richer,
depth camera-based motion and speech input sensing devices
such as Kinect are used both for capture and analysis. In
particular, Kinect’s depth and skeleton streams can be visu-
alised, annotated and queried based on new tools specifically
designed to assist in the analysis.

The proof of concept presented in this paper implements tools
at three levels: a) annotation—log file parsers and scripts
that populate the timeline; b) visualisation—selective joints,
heatmaps and traces; and c) scripting—skeleton, distance,
gesture and audio scripts based on KinectScript. Each of
these were designed with extensibility in mind. Using Kinect
Analysis in a recent Kinect-based guessability study [16]
demonstrated several useful features and the potential to fa-
cilitate important analysis tasks. More detailed studies with
qualitative video researchers on the usability and usefulness
of Kinect Analysis are planned in the future.

In the paper, we have argued that we understand Kinect Anal-
ysis as both a tool and a method. As a tool, it enables re-
searchers to collect data on popular gesture, speech and mul-
timodal interactions [16]. As a method, it adds to the grow-
ing body of knowledge surrounding suitable designs of guess-
ability studies [12, 28]. We plan on making Kinect Analysis
available under an open-source license and also setting up a
web site for the HCI community to try it out and share their
data and experience. This could generally be useful to those
developing Kinect-based systems and conducting guessabil-
ity studies. It could also provide a valuable basis for devel-
oping design patterns for natural user interfaces, something
that our community is still relatively short of. Finally, we
believe that this could be an important step forward in pro-
moting replication and making it feasible.

CODE AND DATA
The Kinect Browser study material including the proposed
multimodal interaction sets and source code are available
from https://github.com/globis-ethz/kinectbrowser.
The Kinect Analysis source code and some of the anony-
mous recordings used in this paper are available from
https://github.com/globis-ethz/kinectanalysis.

REFERENCES
1. Ashbrook, D., and Starner, T. MAGIC: A Motion

Gesture Design Tool. In Proc. CHI (2010).

2. Burr, B. VACA: a tool for qualitative video analysis. In
Proc. CHI EA (2006).

3. Fouse, A., Weibel, N., Hutchins, E., and Hollan, J. D.
ChronoViz: A System for Supporting Navigation of
Time-coded Data. In Proc. CHI EA (2011).

4. Heath, C., Hindmarsh, J., and Luff, P. Video in
Qualitative Research. SAGE, 2010.

5. Hinrichs, U., and Carpendale, S. Gestures in the wild:
studying multi-touch gesture sequences on interactive
tabletop exhibits. In Proc. CHI (2011).

6. Hoste, L., and Signer, B. SpeeG2: a speech- and
gesture-based interface for efficient controller-free text
input. In Proc. ICMI (2013).

7. Jang, S., Elmqvist, N., and Ramani, K.
GestureAnalyzer: Visual Analytics for Pattern Analysis
of Mid-Air Hand Gestures. In Proc. SUI (2014).

8. Jones, B. R., Benko, H., Ofek, E., and Wilson, A. D.
Illumiroom: peripheral projected illusions for interactive
experiences. In Proc. CHI (2013).

9. Kato, J., McDirmid, S., and Cao, X. DejaVu: Integrated
Support for Developing Interactive Camera-Based
Programs. In Proc. UIST (2012).

10. Klemmer, S. R., Hartmann, B., and Takayama, L. How
Bodies Matter: Five Themes for Interaction Design. In
Proc. DIS (2006).

11. Lee, S.-S., Chae, J., Kim, H., Lim, Y.-K., and Lee, K.-P.
Towards more Natural Digital Content Manipulation via
User Freehand Gestural Interaction in a Living Room. In
Proc. UbiComp (2013).

12. Morris, M. R. Web on the Wall: Insights from a
Multimodal Interaction Elicitation Study. In Proc. ITS
(2012).

13. Morris, M. R., Danielescu, A., Drucker, S. M., Fisher,
D., Lee, B., m. c. schraefel, and Wobbrock, J. O.
Reducing Legacy Bias in Gesture Elicitation Studies.
Interactions 21, 3 (2014).

14. Morris, M. R., Wobbrock, J. O., and Wilson, A. D.
Understanding Users Preferences for Surface Gestures.
In Proc. GI (2010).

15. Nacenta, M. A., Kamber, Y., Qiang, Y., and Kristensson,
P. O. Memorability of Pre-designed and User-defined
Gesture Sets. In Proc. CHI (2013).

16. Nebeling, M., Huber, A., Ott, D., and Norrie, M. C. Web
on the Wall Reloaded: Implementation, Replication and
Refinement of User-Defined Interaction Sets. In
Proc. ITS (2014).

17. Nebeling, M., Speicher, M., and Norrie, M. C.
W3Touch: Metrics-based Web Page Adaptation for
Touch. In Proc. CHI (2013).

18. Nebeling, M., Teunissen, E., Husmann, M., and Norrie,
M. C. XDKinect: Development Framework for
Cross-Device Interaction using Kinect. In Proc. EICS
(2014).

19. North, C., Dwyer, T., Lee, B., Fisher, D., Isenberg, P.,
Robertson, G. G., and Inkpen, K. Understanding
Multi-touch Manipulation for Surface Computing. In
Proc. INTERACT (2009).

20. Oh, U., and Findlater, L. The Challenges and Potential
of End-User Gesture Customization. In Proc. CHI
(2013).

21. Ruiz, J., Li, Y., and Lank, E. User-Defined Motion
Gestures for Mobile Interaction. In Proc. CHI (2011).

22. Schmidt, D., Seifert, J., Rukzio, E., and Gellersen, H. A
Cross-Device Interaction Style for Mobiles and
Surfaces. In Proc. DIS (2012).

23. Seyed, T., Burns, C., Sousa, M. C., Maurer, F., and Tang,
A. Eliciting Usable Gestures for Multi-Display
Environments. In Proc. ITS (2012).

24. Troiano, G. M., Pedersen, E. W., and Hornbæk, K.
User-Defined Gestures for Elastic, Deformable
Displays. In Proc. AVI (2014).

25. Vatavu, R. User-Defined Gestures for Free-Hand TV
Control. In Proc. EuroITV (2012).

26. Weibel, N., Emmenegger, C., Lyons, J., Dixit, R., Hill,
L. L., and Hollan, J. D. Interpreter-Mediated
Physician-Patient Communication: Opportunities for
Multimodal Healthcare Interfaces. In
Proc. PervasiveHealth (2013).

27. Weichel, C., Lau, M., Kim, D., Villar, N., and Gellersen,
H. MixFab: A Mixed-Reality Environment for Personal
Fabrication. In Proc. CHI (2014).

28. Wobbrock, J. O., Morris, M. R., and Wilson, A. D.
User-Defined Gestures for Surface Computing. In
Proc. CHI (2009).

https://github.com/globis-ethz/kinectbrowser
https://github.com/globis-ethz/kinectanalysis

	Introduction
	Background and Requirements
	(R1) Timeline-based data navigation and annotation
	(R2) Integration and visualisation of Kinect data
	(R3) Control over Kinect parameters
	(R4) Feedback on Kinect tracking quality
	(R5) Organisation of recordings and analyses
	(R6) Detection of gestures and speech commands
	(R7) Metrics for coding interaction proposals
	(R8) Auto recording, tagging and labelling
	(R9) Comparison of multiple recording sequences
	(R10) Sharing of recordings and reproduction of analyses

	Kinect Analysis
	Recording and visualising multimodal interactions
	Coding and comparing interaction sets
	Sharing data and analysis tasks

	Implementation
	KinectScript
	Skeleton Scripts
	Distance Scripts
	Audio Scripts
	Gesture Scripts
	Script Evaluation

	Kinect Browser Study
	Use of Traces and Heatmaps
	KinectScript vs. Video Analysis
	Method
	Results

	Discussion
	Conclusion
	Code and Data
	REFERENCES

