
XDSession: Integrated Development and Testing of
Cross-Device Applications

Michael Nebeling1∗, Maria Husmann2, Christoph Zimmerli2, Giulio Valente and Moira C. Norrie2

1 Human-Computer Interaction Institute, Carnegie Mellon University
2 Department of Computer Science, ETH Zurich

nebeling@cmu.edu, { husmann, zimmerli, norrie }@inf.ethz.ch

ABSTRACT
Despite the recent proliferation of new cross-device applica-
tion frameworks, there is still a lack of sophisticated tools
for testing new applications during their development. This
paper presents XDSession—a framework for cross-device ap-
plication development based on a concept of cross-device ses-
sions, not only useful for managing distribution and synchro-
nisation, but also for logging and debugging. Integrated with
XDSession are two new tools specifically designed for cross-
device testing. First, the session controller supports manage-
ment and testing of cross-device sessions with connected or
simulated devices at run-time. Second, the session inspec-
tor enables inspection and analysis of multi-device/multi-user
sessions with support for deterministic record/replay of cross-
device sessions. We show the utility of XDSession based on
a case study of a semester-long course project in which our
tools were used by students to reimplement an existing appli-
cation and extend it with cross-device capabilities.

Author Keywords
multi-user/multi-device applications; cross-device
development platform; session concept.

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces—Input devices and strategies, Interaction styles.

INTRODUCTION
For many years, both research and industry have focused on
improving input and output capabilities of available types of
devices as well as developing new and more powerful forms
of devices. While this will continue to be important, a new di-
rection is to try and improve the interaction between devices
so that multiple devices can more easily be used in combina-
tion and form a uniform interaction space.

∗ Michael Nebeling conducted this research while at ETH Zurich.
He is now affiliated with Carnegie Mellon University and funded by
a Swiss NSF Advanced Postdoc.Mobility grant, P300P2 154571.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
EICS’15, June 23 - 26, 2015, Duisburg, Germany
Copyright 2015 ACM 978-1-4503-3646-8/15/06$15.00.
http://dx.doi.org/10.1145/2774225.2775075

Cross-device development requires design decisions and im-
plementation effort on different levels, involving the adapta-
tion, distribution and synchronisation of both the user inter-
face and data across devices [6]. Many different tools have
been developed to address the issues of distributing and syn-
chronising parts of a user interface across multiple devices [2,
5, 8]. However, little has been done to investigate the differ-
ences between traditional and cross-device development pro-
cesses. In particular, testing becomes more difficult as it has
to consider the use of multiple devices by multiple users in
co-located, remote or mixed usage scenarios.

To address this problem, we have developed XDSession, a
lightweight and extensible framework for cross-device devel-
opment with support for integrated development and testing
of cross-device applications. It is based on cross-device ses-
sion concepts from [6] for managing the distribution of both
the user interface and information. This paper explores how
the concepts can be exploited for logging and debugging, and
makes the following contributions:

• extended cross-device session concepts with new opera-
tions for sharing data between multiple sessions;

• XDSession, our reference implementation of the concepts
supporting the full set of operations and serving as a plat-
form for research into cross-device testing;

• the session controller and session inspector as two novel
tools specifically designed to support cross-device devel-
opment and testing based on the new concepts.

We also present a case study of an independent semester
project in which XDSession was used by students to enhance
an existing application with cross-device capabilities.

CROSS-DEVICE SESSION CONCEPTS & OPERATIONS
The literature often informally speaks of sessions to refer to
information interchange between a user and a device or be-
tween two or more communicating devices. We wanted to
formalise this concept and use it as a construct both for group-
ing users and devices as well as associated information. This
section defines the concepts and available operations.

Figure 1 shows three users with four devices participating in
two sessions sharing data. Users 1 and 2 with their respective
devices are participating in Session A, while User 3 with De-
vices 3 and 4 is in Session B. Changes made to the shared data
overlapping both sessions are sent to all four devices, while

Session BSession A

Sh
ar

ed

Device 2

Device 1
Device 4
Device 3User 3

User 1

User 2
Figure 1. Cross-device sessions example

changes to data contained in a single session are sent only to
the directly connected devices.

Our concept of a Session S is defined as S =< U,D, I >
linking the concepts of User U , Device D and Information I
represented as data and metadata. Data refers to the informa-
tion managed in a session, while metadata describes the inter-
actions and how the data was manipulated during the session.

(a) Joining sessions 1 and 2

(b) Duplicating a session (c) Forking a session

Figure 2. Session operations

Based on these concepts, we have defined seven session op-
erations: create, edit, delete, join, leave, duplicate, and fork.
The first three cover basic CRUD operations to manage in-
formation within sessions. The remaining four operations il-
lustrated in Figure 2 are more interesting as they control how
information is managed and shared between sessions.

A device can join multiple sessions. On join, the device re-
ceives the whole or the missing part, i.e. the part of the newly
joined session which does not overlap with any other session
the device is already part of, of the data belonging to the se-
lected session. When a device leaves a session, data of that
session which is not shared with any other session is removed
from the device. We define a fork as a dependent copy of a
session, where a new session is created maintaining the ref-
erences to the data of the existing session being forked. On
the other hand, duplication creates an independent copy of an
existing session, i.e. a new session with duplicated data.

XDSESSION
Based on the session concepts, we designed XDSession as
a framework for cross-device application development. Fig-
ure 3 shows the main components of our framework. Our im-
plementation of XDSession is based on a client/server archi-
tecture. The server is responsible for managing and distribut-
ing both the data and the UI of an application. The client pro-
vides two specific components for handling sessions, namely
the session controller and the session inspector. The session
controller enables users to manage devices and sessions in an
easy way. It also allows developers to simulate different types
of devices for testing. The session inspector provides a log-
ging system and introduces a method for reproducing events
logged as metadata stored in a session. The session manage-
ment components are shared by the client and server.

Session Management

Session Inspector

Session Controller

Client

Data Distribution

UI Distribution

Server

Figure 3. XDSession framework components

XDSession applications are written in HTML5 and
JavaScript. Web developers can therefore write appli-
cations using technologies with which they are already
familiar. XDSession’s server takes care of both persistence
and synchronisation. The developer can focus on the client
implementing the UI and logic of the application itself.
Developers who only want to build cross-device applications
can directly benefit from the framework support without
having to understand the underlying mechanisms, while
tailoring and extending the framework is also possible for
more advanced applications.

XDSession uses an event-driven architecture for session man-
agement based on callback functions to inform about per-
formed actions. For most operations, the response contains
a reference to the data, or is null if an error occurred. Data
created, updated or deleted from other devices is received in
realtime from a listener function. The received object con-
tains a reference to the respective data as well as metadata
including the user, device and sessions involved in the action.
In addition, developers can define custom events in order to
send data between devices. Unlike the previous operations,
custom operations may not be logged as part of the sessions
they concern if the developer chooses not to do so. This fea-
ture is designed to stream data and support the handling of in-
teractions in DUIs, while, at the same time, providing means
for optimisation if data or metadata do not need to be stored.

The remainder of this section presents the session controller
and session inspector as two tools based on these concepts
specifically designed for testing XDSession applications.

Session Controller
The session controller is a visual tool that can be used for
managing cross-device sessions in XDSession applications.

Beyond that, our goal was to allow the session controller to be
used as a prototyping tool enabling the rapid creation of vir-
tual sessions not associated with any connected device, thus
for simulating and testing different multi-user/multi-device
scenarios facilitating the cross-device development process.

While developers may choose to implement their own ses-
sion controller using the XDSession API, a default session
controller can be integrated in the HTML body of an XD-
Session application via a custom session-controller
HTML tag. It essentially embeds a toggle menu giving access
to user, session and device properties at run-time. From this
menu, it is possible to create new and manage existing users
as well as selecting the user(s) in control of the current ses-
sion. It is also possible to specify which users are allowed to
interact with a device. A new session can be created and the
device then automatically joins the new session. As explained
before, a device can join multiple sessions. Shared data is au-
tomatically synchronised between devices by the framework.
When a session is removed, it is first deselected from all the
devices and then the data that is not shared is removed. While
the framework is able to automatically detect the device type,
the properties can also be edited. This enables simulation of
a different device type for testing purposes.

Session Inspector
The session inspector is a visual tool for inspecting data
and metadata of cross-device sessions in XDSession appli-
cations. In combination with the session controller, it can be
used for recording and replaying sessions and therefore ac-
tions triggered on connected or simulated devices. Similar
to the session controller, it can be integrated via a custom
session-inspector HTML tag.

Figure 4. Overview tab in Session Inspector

The overview shown in Figure 4 visualises the state of an XD-
Session application in terms of the user, device and session
properties. Changes to the data and metadata are visualised as
packets flowing from the source device to all devices partici-
pating in the respective session(s). The graph can be panned
and zoomed and via double-click it is possible to inspect the
selected entities. With this tool, it is possible to monitor the
flow of information and trace messages between devices and

sessions, which supports keeping an overview and helps ver-
ifying that a session was indeed configured correctly.

All collected information can be inspected in more detail via
the logger shown Figure 5 with which it is possible to browse
all past events and see new events in realtime. Each event
triggered by the user or generated by the system is automat-
ically added to the log. The log can be filtered by device
type(s), i.e. smartphone, tablet, desktop, by session(s) and by
device(s). A double click on a log entry enters the debug
mode and jumps to the respective event on the timeline.

Figure 5. Logger in Session Inspector

The timeline shown in Figure 6 is the core of the session in-
spector as a debug tool allowing to navigate the timeline of
recorded events. It enables deterministic record/replay simi-
lar to [1], a technique that gives the possibility of reproducing
the actions that took place at a certain time, without altering
the course of the events [4]. The session inspector can re-
produce session events and therefore undo/redo create, mod-
ify and delete actions of data based on the stored metadata.
Events can be replayed by changing the log time either via
the forward/backward controls or by clicking an event.

Figure 6. Timeline interface in Session Inspector

To replay events, it is necessary to enter the debug mode. This
action synchronises the devices with the log time, which is
then maintained and propagated to all participating devices.
Sessions that are replayed are processed independently of any

active sessions in XDSession. The user can combine and re-
view recorded sessions on the fly. Our technique allows seam-
less testing on the current and participating devices, and exit-
ing the debug mode at any time to resume the active sessions.

With the remaining tabs, it is possible to obtain detailed in-
formation on users, devices and sessions. The three views are
connected with each other: the first shows registered users
and their devices, the second shows the devices and sessions
to which they are connected, and the third shows the sessions
and contained information. In each session it is possible to
see both active and deleted data, where deleted data is marked
in red. In addition, it is possible to see with which session(s)
the data is shared. Finally, for each data entry, it is possible to
see collected metadata in terms of the performed action, the
user and the device that carried out that action as well as a
short text summarising the action.

IMPLEMENTATION
XDSession consists of a server-side and a client-side compo-
nent. The server is built in Java and handles 1) data distri-
bution, 2) persistence, and 3) UI distribution. For data distri-
bution, the server keeps track of all users, devices, and their
sessions. When a device joins a session, the server sends it
all necessary data. When a data item is changed on a device,
the server propagates the changes to all devices that share the
same session. To provide such updates from server to client,
bidirectional realtime communication is needed, which we
realise with Socket.IO. On the server-side we use an open-
source Socket.IO implementation1 based on the Netty2 server
framework. Persistence is implemented based on the db4o3

object-oriented database. The server stores a string repre-
sentation of each data item. Additionally, metadata such as
sessions, devices, users, and logs are also made persistent.
XDSession includes a Jetty4 web server and provides a ba-
sic UI distribution mechanism that allows to deliver differing
html-files tailored to the device type. Device type detection is
done with MobileESP5.

The client is written in TypeScript6, a typed superset of
JavaScript. TypeScript code compiles to JavaScript; hence,
developers can opt to use the JavaScript version of XDSes-
sion and are not forced to use TypeScript. The client logic
consists of modules for 1) device detection, 2) persistence,
3) session management and 4) logging. The device detection
relies on the client-side implementation of MobileESP. The
device information is available to the developer on the client
side, but also transmitted to the server for the UI distribution.
The client saves information and settings of the current device
in local storage, so that they persist across browsing sessions.
In particular, the current device, sessions, and user are stored.
The session management module administrates information
of users, sessions, and devices present in the system. It com-
municates with the server to keep up to date. The log module
1https://github.com/mrniko/netty-socketio
2http://netty.io
3http://www.db4o.com
4http://eclipse.org/jetty
5http://mobileesp.com
6http://www.typescriptlang.org

provides access to the log and is mainly used by the session
inspector, but could also be used directly by a developer. On
top of the client modules, the session inspector and the ses-
sion controller are implemented in AngularJS7. In addition,
the session inspector uses the CHAP Links Library8 for the
graph and timeline visualisations. The session controller re-
lies on Alertify9 for dialogs and notifications.

IDEA ARCHIPELAGO CASE STUDY
This section presents a case study on how XDSession was
used to support the Idea Garden EU FP7 research project10.
The research project running from October 2012 to Septem-
ber 2015 involves eight academic and industrial partners from
all across Europe to design an interactive learning environ-
ment fostering creativity. In the first year, a first version of
an application called Idea Archipelago was designed around
an interactive whiteboard installation and implemented using
Windows technologies. In the second year, it was decided
to switch to web technologies in order to expand the sup-
port for different devices and enable cross-device use of the
application. XDSession, not only enabled a rapid switch of
technologies and cross-device support, but also facilitated the
development process as more devices were supported.

Original Idea Archipelago
The original application was implemented for the Windows
.NET platform using Windows Presentation Foundation11

technologies. The application is targeted at an interactive
whiteboard setting with digital pens as input devices. It al-
lows users to manage information related to projects. After
creating and opening a project, users can import files (im-
ages, videos, documents) from the file system and via image
web search (e.g. Flickr, Google images) onto a fixed-size grid
map. On the map, files can be clustered into groups. These
groups can be named and moved as one entity. In addition to
importing existing files, the application also allows to create
new content in grid cells by launching external applications
for editing or creating small post-it note-like scribbles right in
the cell. Items on the map can also be duplicated and deleted.

Development Process
In a semester-long (14 weeks) lab project we set students the
task of re-implementing the existing Idea Archipelago appli-
cation using web technologies and extending it with cross-
device capabilities. The group consisted of four computer
science master students (2 males + 2 females, age 23-26, final
year MSc Computer Science, average 2 years web program-
ming experience). Each of them committed an average of ten
hours per week to the project.

The lengths of the different periods of the semester project are
shown in Table 1. The first part of the students’ work concen-
trated on re-implementing the existing application’s features
7https://angularjs.org
8http://almende.github.io/chap-links-library
9http://fabien-d.github.io/alertify.js

10http://idea-garden.org
11http://msdn.microsoft.com/en-us/library/ms754130%
28v=vs.110%29.aspx

https://github.com/mrniko/netty-socketio
http://netty.io
http://www.db4o.com
http://eclipse.org/jetty
http://mobileesp.com
http://www.typescriptlang.org
https://angularjs.org
http://almende.github.io/chap-links-library
http://fabien-d.github.io/alertify.js
http://idea-garden.org
http://msdn.microsoft.com/en-us/library/ms754130%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms754130%28v=vs.110%29.aspx

Task Length
Re-implementation of Archipelago functionality 5 weeks
Scenarios for multi-/cross-device work 1 week
Adaptations to different device characteristics 2 weeks
Familiarisation with XDSession 1 week
Architecture change to MVC 1 week
Integration of XDSession 1 week
Notifications of other users’ actions 1 week
Preparation for presentations 2 weeks

Table 1. Lengths of the semester project’s phases

with web technologies. The focus was on single device/user
settings on desktop computers with mouse and keyboard as
input devices. This part was finished after 5 weeks.

Next, the students shifted their focus from development work
to envisioning multi-device/multi-user scenarios for the ap-
plication. These ideas were implemented in two parts, car-
ried out in parallel by different students: (1) adapting to other
devices and (2) adding cross-device functionality.

Adaptation to other devices mainly meant that the target de-
vice range was extended to mobile devices (tablets and smart-
phones). The idea was to make the application’s full func-
tionality also available on these devices. This required adap-
tations to much smaller screen sizes and touch input. Figure 7
shows the resulting UI running across different devices.

Figure 7. Idea Archipelago XD
The students were provided with the XDSession framework
to use it as a basis for adding cross-device functionality to the
application. The familiarisation with, and actual integration
of, XDSession each took roughly one week. The new web-
based, cross-device version was named Idea Archipelago XD.

Integration of XDSession
When XDSession is adopted in order to add cross-device
functionality to an application under development, the main
design choice is how to map application concepts onto XD-
Session’s session concepts. Here, the goal was to support
users with collaborative work on the information related to
a project. Multiple users should be able to employ multiple
devices (even per user) to manipulate the project’s data at the
same time. They should be aware of the other users and de-
vices who are collaborating and of their actions. Therefore,
the decision was made to map projects onto XDSession ses-
sions. Creating a new project translates to creating a session.

Opening a project from the application’s project overview
means joining that session. Manipulating the project’s data
means editing the session data, which leads to these changes
being propagated to all other devices currently in the session
and therefore the project. These other devices can then show
notifications to make the users aware of the changes.

In addition to notifications about applied changes, it was also
decided to show information labels on cells whose content
is currently being edited on another device, as well as on
cells and groups that are currently being moved on another
device. The original application did not need such a mech-
anism, since the collaborative whiteboard setting it targets
means that other users can always see directly if one user is
editing a certain cell. The information labels are, however, no
locks. If a second user decides to edit an item that is already
being edited anyway, XDSession’s last-update-wins seman-
tics would decide which version of the content would result
at the end. However, XDSession’s history functionality al-
lows the application to display who has edited an item and
when, thus tracing lost updates due to concurrent edits.

Observations and Feedback
The feedback on XDSession we received from the students
is encouraging: the students appreciated its features as they
allowed them to save precious development time and focus
their efforts on the UI adaptations and application-specific
cross-device support without having to face all the fundamen-
tal challenges of providing cross-device distribution and syn-
chronisation support. For us, it was particularly promising to
see that only little time was required to understand and inte-
grate the framework. Our reviews revealed high-quality code
and effective use of XDSession’s major features.

Finally, we want to highlight three examples of how the stu-
dents made innovative use of the framework and tool support
and two ways how they could be beneficial to the project in
the future.

First, they carefully prepared a project and therefore a session
for a live cross-device demo of both the application’s features
and the use of the framework. This session was useful for re-
hearsal and tests using the students’ own mobile devices. Sec-
ond, the session inspector was used to verify that the correct
devices were connected to the system and that they joined the
correct sessions. For this, the graph in the overview tab was
especially useful. Third, when debugging issues with the new
notification functionality of Archipelago XD, the logging fa-
cility of the session inspector was used to determine if events
were actually produced by the source or not processed by the
target device.

In the future, the session inspector could be used to analyse
the need for collaborative editing support and determine the
best possible user experience that could be achieved. Ses-
sion logs could be produced by simulating realistic multi-
user/multi-device scenarios and studied using the different
views available in XDSession’s inspector. For example, the
number of lost updates could be determined and be used
as a basis for deciding on a strategy for concurrency con-
trol. Finally, the session controller and inspector could be

used together to produce a number of recordings of meetings
in which Idea Archipelago XD is used to discuss the next
steps planned as part of the European research project. These
recordings in the form of sessions could then be shared with
the other project partners to be reproduced and replayed inter-
actively for them to get a better understanding of the ideas.

RELATED WORK
This paper proposes a set of tools for testing and debugging
specifically designed for cross-device applications. The com-
mon approach of using browsers’ in-built tools such as Fire-
bug12 or Chrome Developer Tools13 in combination with de-
vice emulators or remote debugging via USB helps to catch
errors in the code, but is insufficient to deal with problems
that may arise in a multi-user/multi-device context.

Browser-independent tools include PhoneGap Emulator14

and Weinre15. PhoneGap Emulator is a browser plugin that
integrates a browser-based device emulator. The tool em-
ulates PhoneGap’s core APIs and can be used alongside
Chrome Developer Tools for debugging UI and application
logic. Weinre is a remote debugger for mobile web appli-
cations. Similar to Chrome Developer Tools, it provides
a JavaScript console, system profiler and DOM inspector.
While being effective tools for emulation and remote inspec-
tion, they are still oriented towards single-device applications.

Another important shortcoming of these tools is that they are
not able to reproduce errors that have occurred during test-
ing. Advanced debugging support has therefore been the sub-
ject of recent research. Mugshot [4] is a tool for capturing
events from a JavaScript programme. It provides determinis-
tic record/replay of a web application, making it possible to
reproduce and analyse certain behaviours. The authors iden-
tified a number of advantages of using this technique, such
as failure analysis, performance evaluation, and even usabil-
ity analysis of a GUI. Timelapse [1] is a similar tool that al-
lows developers to record and replay interactive behaviours in
web applications. It is possible to browse, visualise, and seek
within the recorded programme, while using common debug-
ging approaches such as breakpoints or reading the logger.
With XDSession, we explore a simplified technique, but one
that is better suited to multi-device/multi-user environments.

A number of promising projects have been launched outside
the research community. Firebase16 is a cloud-based service
that stores and synchronises JSON data in realtime across de-
vices. Basic tool support for testing and debugging is pro-
vided in the manner of an inspection tool that allows to ob-
serve and manipulate the data in the cloud. However, only the
current state is presented and no logging is offered. In con-
trast, Meteor17 is a full stack framework. Data synchronisa-
tion across clients is supported based on a collection concept.

12http://getfirebug.com
13https://developers.google.com/
chrome-developer-tools

14http://emulate.phonegap.com
15https://people.apache.org/˜pmuellr/weinre
16https://www.firebase.com
17https://www.meteor.com

It offers a publish-subscribe mechanism to control how the
data is shared among clients. While both Meteor and Fire-
base have a concept of a user, there is none for devices or
the notion of grouping data in sessions. PubNub18 is another
realtime framework, which provides synchronisation of data
across multiple devices. While it does track the online status
of devices, the devices or users are not associated to changes
in the data, which is the case in XDSession.

CONCLUSION
In this paper, we have presented XDSession—a new frame-
work for developing cross-device applications with integrated
support for testing and debugging. The framework imple-
ments the concept of cross-device sessions introduced in [6].
Cross-device sessions are treated as data containers used by
multiple devices whose purpose is to record the data exchange
between multiple devices and support session playback for
data sharing between sessions.

To aid development and testing of cross-device applications
based on these concepts, XDSession integrates two novel
tools for managing and analysing cross-device sessions. The
session controller can be used to manage devices and group
them into sessions. Devices may actually be connected to the
system, or they can be simulated. Both are useful for test-
ing. The session inspector facilitates inspection and analy-
sis of cross-device sessions. It adapts an existing method for
deterministic record/replay to cross-device sessions and sup-
ports monitoring of data exchange between devices and users.

REFERENCES
1. Burg, B., Bailey, R., Ko, A. J., and Ernst, M. D.

Interactive Record/Replay for Web Application
Debugging. In Proc. UIST (2013).

2. Frosini, L., and Paternò, F. User Interface Distribution in
Multi-Device and Multi-User Environments with
Dynamically Migrating Engines. In Proc. EICS (2014).

3. Heikkinen, T., Goncalves, J., Kostakos, V., Elhart, I., and
Ojala, T. Tandem Browsing Toolkit: Distributed
Multi-Display Interfaces with Web Technologies. In
Proc. PerDis (2014).

4. Mickens, J. W., Elson, J., and Howell, J. Mugshot:
Deterministic Capture and Replay for JavaScript
Applications. In Proc. NSDI (2010).

5. Nebeling, M., Mintsi, T., Husmann, M., and Norrie,
M. C. Interactive Development of Cross-Device User
Interfaces. In Proc. CHI (2014).

6. Nebeling, M., Zimmerli, C., Husmann, M., Simmen, D.,
and Norrie, M. C. Information Concepts for Cross-Device
Applications. In Proc. DUI@EICS (2013).

7. Paternò, F., and Santoro, C. A Logical Framework for
Multi-Device User Interfaces. In Proc. EICS (2012).

8. Yang, J., and Wigdor, D. Panelrama: Enabling Easy
Specification of Cross-Device Web Applications. In
Proc. CHI (2014).

18http://www.pubnub.com

http://getfirebug.com
https://developers.google.com/chrome-developer-tools
https://developers.google.com/chrome-developer-tools
http://emulate.phonegap.com
https://people.apache.org/~pmuellr/weinre
https://www.firebase.com
https://www.meteor.com
http://www.pubnub.com

	Introduction
	Cross-Device Session Concepts & Operations
	XDSession
	Session Controller
	Session Inspector

	Implementation
	Idea Archipelago Case Study
	Original Idea Archipelago
	Development Process
	Integration of XDSession
	Observations and Feedback

	Related Work
	Conclusion
	REFERENCES

