
The Trouble with Augmented Reality/Virtual Reality Authoring Tools
Michael Nebeling* Maximilian Speicher†

University of Michigan School of Information
https://mi2lab.com

ABSTRACT

There are many technical and design challenges in creating new,
usable and useful AR/VR applications. In particular, non-technical
designers and end-users are facing a lack of tools to quickly and eas-
ily prototype and test new AR/VR user experiences. We review and
classify existing AR/VR authoring tools and characterize three pri-
mary issues with these tools based on our review and a case study. To
address the issues, we discuss two new tools we designed with sup-
port for rapid prototyping of new AR/VR content and gesture-based
interactions geared towards designers without technical knowledge
in gesture recognition, 3D modeling, and programming.

Keywords: augmented reality, virtual reality, authoring, design,
rapid prototyping, 3D modeling, gestures, Wizard of Oz.

Index Terms: Human-centered computing—Interaction
paradigms—Mixed / augmented reality

1 INTRODUCTION

Today’s AR/VR applications are mostly built by tech-savvy devel-
opers. Significant technical skill and programming experience is
required to create AR/VR experiences. While tools like Unity and
A-Frame have in many ways become the “standard for AR/VR,”
they still provide a high threshold for non-technical designers and
are inaccessible to less experienced end-users. There is a new class
of tools for creating basic AR/VR experiences, allowing users to
choose from pre-made 3D models and existing scripts for anima-
tion and interactivity. However, these tools usually cover only a
very limited spectrum of the AR/VR design space and still require
programming for more advanced application logic.

In this position paper, we classify existing authoring tools relevant
to AR/VR, identify five classes of tools (Fig. 1), and characterize the
main issues we see with how the tool landscape has been evolving.
Both authors have a track record of research on interactive technolo-
gies with a more recent focus on AR/VR [20, 28–30]. For example,
they created ProtoAR [20], a tool designed with the vision of making
AR/VR prototyping as easy and versatile as paper prototyping, and
GestureWiz [30], a Wizard of Oz gesture prototyping environment.
The second author also contributed to the design and development of
HoloBuilder [31] from 2015 to 2017. When he joined the company,
the original idea was to create a “PowerPoint for AR,” enabling
users without specific design and development skills to create AR
experiences. For the future, we envision tools as simple yet powerful
as PowerPoint or Keynote leveling the playing field for AR/VR.

2 FIVE CLASSES OF AR/VR AUTHORING TOOLS

Interaction design [3, 19, 23] has evolved into a comprehensive, iter-
ative process with four main activities: establish user needs, develop
alternative designs, build interactive prototypes, and evaluate proto-
types. Any remaining difficult or new critical areas will be subjects

*e-mail: nebeling@umich.edu
†e-mail: mspeiche@umich.edu

S
ki

ll
&

 re
so

ur
ce

s
re

qu
ire

d
Level of fidelity in AR/VR

Class 1
InVision,

Sketch, Adobe
XD, ...

Class 2
DART, Proto.io,
HoloBuilder, ...

Class 3
ARToolKit,

HoloBuilder,
AR Studio, ...

Class 4
Teddy,

SketchUp,
3ds Max, ...

Class 5
Unity3D, Unreal Engine,

A-Frame, ...

?

Figure 1: AR/VR authoring tools classified along (x) the possible level
of fidelity in AR/VR, and (y) skill & resources (e.g., 3D models, 360
photos, hardware) required. An “optimal” class of tools would be on
the far right and remain low. Tools that combine the principles of our
ProtoAR [20] and GestureWiz [30] could be examples for this class.

of future iterations. A significant part of the process is prototyping al-
ternative designs, typically with several iterations on paper to shape
the concept [1, 22, 26], then moving to digital tools to increase the
level of fidelity and generate new design insights [16, 17]. For AR,
however, paper prototyping was recently found too limiting [7, 20],
motivating the development of new techniques that support physical
prototyping but integrate well with digital tools.

There is an extensive number of digital tools available for creating
interactive prototypes, but across all tools, support for AR/VR con-
tent and interactive behavior is limited and scattered. The landscape
of existing digital tools can be grouped into five classes of tools.

2.1 First Class: Basic Mobile Screens & Interactions

The first class consists of tools for mobile and web designers such
as InVision, Sketch, and Adobe XD. Many tools in this class have
a concept of multiple screens, support defining active regions in
these screens that listen to mouse and touch input to trigger menus
or transition to other screens, and enable mobile app previews on
smartphones and tablets. While this is sufficient for traditional
mobile interfaces, tools in this class lack support for AR/VR content
and interaction as they do not interface with AR/VR technologies.

2.2 Second Class: Basic AR/VR Scenes & Interactions

The second class consists of AR/VR counterparts of tools in the
first class supporting basic forms of AR/VR content and interactive
behavior. An early example in research is DART [18], extending
Macromedia Director with scripts for animating 3D avatars useful for
prototyping storytelling AR experiences. Recent examples, Proto.io,
Halo, and HoloBuilder, aim to be InVision-like tools for AR/VR.
Users can upload 360-degree photos to create immersive scenes
and define basic interactive behaviors via image maps with anchors
that trigger menus or load other scenes. While VR previews are

https://mi2lab.com

supported with Google Cardboard, AR spatial trackers required for
composite views of virtual content and real-world objects are not.

2.3 Third Class: AR/VR Focused Interactions
The third class consists of tools focused on AR camera-based in-
teractions. Early examples from research include ARToolKit [11],
Tiles [21], Studierstube [24] and ComposAR [25]. HoloBuilder as
well falls into this category since it features marker-based AR func-
tionality. Recent solutions like Facebook’s AR Studio or Snapchat’s
Lens Studio allow users to select from libraries of trackers (face,
hand, plane), 2D/3D objects, video masks, and animations to create
interactive, shareable camera effects responding to people and ob-
jects in their surroundings. There is support for visual programming
to add basic animations, logic, and interactivity, but many interface
concepts common to tools from the other classes, such as screens,
menus, and transitions, are absent.

2.4 Fourth Class: 3D Content
The fourth class consists of 3D content creation tools like Teddy [8]
and Lift-Off [10] created by researchers, Google’s SketchUp and
Blocks, as well as Autodesk’s 3ds Max and Maya. Tools in this
class support the creation of new 3D objects via digital 3D modeling,
animation, and simulation techniques unique to this class of tools.
3D objects can be exported in common 3D file formats supported by
other classes of tools except the first. Further, 3D content sharing
platforms like Google’s 3D Warehouse and Poly have significantly
grown in recent years because of the increased need for 3D content
due to emerging new technologies for 3D printing as well as AR/VR.

2.5 Fifth Class: 3D Games & Applications
The fifth and last class consists of tools like Unity, Unreal, and A-
Frame, which are comprehensive game and application development
platforms. Tools in this class come with a visual editor in which
scenes with 3D objects can be visually specified and assets such
as 3D models, textures, and sounds can be imported and managed.
Although most AR/VR device platforms integrate with Unity and
Unreal, there is relatively little support specific to AR/VR in them.
A-Frame is a relatively new and increasingly popular AR/VR appli-
cation development layer on top of HTML, CSS, and three.js. Still,
new AR/VR content needs to be created with the aforementioned
3D tools and the specification of interactive behavior for AR/VR
requires extensive knowledge in 3D graphics and programming lan-
guages such as C# or JavaScript. As these constitute primary barriers
for non-technical designers [2, 18], this class of tools is geared to-
wards programmers. While they enable high-fidelity interactive
AR/VR applications, prototyping alternative designs with them is
a lot harder, much more time-consuming, thus significantly more
expensive compared to tools in the other classes.

3 THE TROUBLE WITH EXISTING TOOLS

Our brief review of existing digital tools has highlighted three main
problems: (1) a massive tool landscape, (2) most AR/VR projects
require tools from multiple classes, and (3) significant gaps of tools
both within and between classes of tools.

3.1 Massive Tool Landscape
First, there is a complex tool landscape and the sheer number of
tools makes it hard for new designers. The significant differences
between tools in terms of support for AR/VR content and interactive
behavior and the high speed with which the digital tool landscape is
evolving still make it difficult even for experienced designers and
developers. A significant part of AR/VR applications is 3D content.
In the current tool landscape, however, this requires a special class of
tools orthogonal to other classes and a completely different skill set
and training of designers in 3D modeling, animation, and simulation.

3.2 Design Processes are Unique Patchworks

Second, every new AR application that is being built essentially
requires building a unique tool chain as well, where selection of
tools highly depends on technical requirements of the next design
stage. Developers and engineers can work with tools at the high
end of the tool chain (choosing tools like Unity) because they have
the training and experience. Yet, these are usually out of reach for
non-technical designers. Even worse is that users with less training
often end up working with an even larger patchwork of tools, to try
to work around their challenges with more professional tools [12].

3.3 Significant Gaps Within & Between Tools

Third, to move an AR/VR application from early design concepts
to interactive prototypes, developing alternative designs and design
iterations typically require creating different parts and versions of
the application with different classes of tools. However, the tool
chain is generally optimized in the upwards direction (e.g., tools
like Halo export to Unity but not vice-versa). This makes design
iterations especially tricky and expensive if they require going back
to a previous tool from another class.

4 CASE STUDY

As mentioned earlier, the second author contributed to HoloBuilder,
a PowerPoint-inspired tool situated in the second and third classes
above, for two years and gained first-hand experience with designing
and promoting a platform intended to enable anyone to create AR
applications [31]. AR projects in HoloBuilder are based on custom
images or point clouds as markers while different states of an app are
represented by different “slides”, each of which can feature zero or
one markers (Fig. 2). Moreover, users are provided with a selection
of predefined 3D models, such as arrows, cubes, and spheres. The
3D models added to a “slide” can be enhanced with basic animations
and click events that either trigger a transition to a different “slide”
or an animation. During his time at HoloBuilder, the second author
made three key observations analogous to the problems above.

Figure 2: An AR scene with custom 2D marker in HoloBuilder

First, the vast majority of end-users saw HoloBuilder as a tool
for creating virtual tours from 360-degree photos rather than AR
content. Many made use of a specific kind of “slide” where a 360-
degree photo could be uploaded as the “marker”, thus technically
still creating an AR scene, but with the camera positioned at the
center of a sphere having the 360-degree photo as its inner texture.
Different from these end-users, the actual AR capabilities sparked
more interest in professional users from industry, most likely due to
a combination of higher application requirements and more specific
AR use cases. Their AR projects were, however, still marker-based
and required a separate mobile app, while 360-degree projects could
be viewed directly in the browser. These are examples of confusion
about the type of tool (Problem 1) and of gaps within the tool

(Problem 3) since these two use cases are disjunct and have little
common ground besides the technical basis.

Second, it became evident fairly quickly that users wanted to work
with more advanced 3D models than the predefined set that came
with the platform, which called for integration with external libraries
of 3D models. While users could search for 3D models directly
from HoloBuilder, this integration, due to technical restrictions, still
required them to download the model in one of the supported formats
and then manually drag and drop the downloaded file. This again
illustrates the range of tools required (Problem 1), each of which
takes care of something else as well as the gap between such tools
(Problem 3), which leads to suboptimal integrations.

Third, due to the abundance of 360-degree virtual tours,
HoloBuilder’s focus shifted from AR to VR projects that could
be viewed in, e.g., Google Cardboard. This also led to a strong
focus on click interactions, using gaze and dwell typical for VR with
Cardboard, ruling out more advanced interactions such as dragging
objects in AR. While dragging, as a workaround, could still be partly
simulated with, e.g., a click triggering a move animation, it was not
possible to design more complex interactions required for many AR
applications. Thus, even if a user created a complete AR scene in
HoloBuilder, they would still need to use a patchwork of tools for
designing interactions beyond clicks (Problem 2).

5 So, what’s a better tool?

AR/VR interfaces are rich in content and afford multiple modali-
ties, including touch, gesture, and speech. The above review of the
tool landscape has revealed two key problems: (1) creating con-
tent for AR/VR interfaces remains difficult [18], and (2) specifying
interactive behavior requires significant programming or model train-
ing [32]. The first problem can be traced back to limited support
for early-stage prototyping using physical materials [7]. The second
problem is due to the complexity of algorithms required for mobile
device tracking [13] and gesture recognition [27], where there are
few tools geared towards non-technical designers [9, 33]. In view
of these problems, it is important to ask what would make a better
tool? Below we characterize the tool support we envision for future
tools addressing both problems, before presenting ProtoAR [20] and
GestureWiz [30] as examples from our own research.

5.1 Inspiration from DART

The closest to the new tools envisioned by the authors is DART [18].
It shares the authors’ goal of leveraging interaction designers existing
skills and strengths. Designers use storyboards to organize sketches
and images in sequence for the purpose of pre-visualizing animated
and interactive content. To meet this need of designers, DART
enabled rapid transition from 2D storyboards to 3D animatic actors
as placeholders for final 3D content creation, allowing designers
to explore interactive stories for new AR experiences. Through
integration of Macromedia Director and AR technologies, designers
could visually specify, rather than program, relationships between
the physical and virtual worlds (e.g., start animation when specified
position of the virtual camera is reached, physical object marker
tracked, or timer elapsed).

5.2 Overcoming Limitations with Wizard of Oz

However, unlike the new tools envisioned by the authors, existing
tools are still bounded by the limitations of AR tracking and interac-
tion approaches [15, 34]. There are two important hard problems.

First, device motion tracking required for devices’ internal sensors
to understand and track the position relative to the world is still
limited. Marker-based and marker-less tracking approaches can
be distinguished. The first approach still requires instrumentation
of the environment with fiducial markers. The second approach
is relatively limited in terms of environmental understanding (e.g.,

ARKit/ARCore can only detect simple geometry like horizontal and
vertical planes).

Second, while a lot of the interaction in AR is implicit (e.g.,
device motions, user’s gaze), support for explicit interactions like
touch, gesture, and speech is limited. Extensive research has pro-
duced many new tools and libraries focused on gesture recognition.
However, most require instrumentation of the environment with ex-
ternal sensors like Kinect or significant time to train the underlying
models from sample gestures provided by designers or users [27,32].

Ultimately, these shortcomings limit designers’ ability to rapidly
prototype, and users’ ability to fully experience, novel AR interfaces.
In user interface research, Wizard of Oz [4] is a common technique
to circumvent system limitations, by having an experimenter (the
“wizard”) simulate the behavior of a fully working system. While,
in principle, possible for prototyping AR experiences [5, 6], this is
hard because of the many degrees of freedom with AR interactions.
Having a single wizard simulate all aspects of an AR system is not
feasible [18] and using multiple wizards requires extensive training
and coordination [14].

5.3 Two Examples from the Authors
5.3.1 ProtoAR: Quick & Easy Capture of AR Content
At CHI 2018, the first author presented ProtoAR [20], a tool he
created to support prototyping of mobile AR apps by crafting the
main screens and AR overlays from paper sketches and quasi-3D
objects from 360-degree captures of Play-Doh models (Fig. 3). The
project used a series of student design jams around IKEA’s furniture
placement AR app called Place. Students started on paper sketch-
ing screens and user flow, then used Play-Doh to model miniature
versions of furniture they wanted to place, and finally made use of
ProtoAR’s capture tools to digitize these physical materials and see
AR views on smartphones. With ProtoAR, students with no training
in 3D graphics and programming were able to generate low-fidelity
versions of the IKEA Place AR app in less than 90 minutes.

Figure 3: ProtoAR’s [20] 360-degree capture of Play-Doh model (top);
captured quasi-3D object (middle); marker-based AR preview (bottom)

5.3.2 GestureWiz: Prototyping Gesture Interactions for AR
A second tool the authors also presented at CHI 2018 is Ges-
tureWiz [30]. Inspired by Wobbrock et al.’s $1 recognizer’s simple
and flexible design, it provides a rapid prototyping environment to
designers with an integrated solution for gesture definition, conflict
checking, and real-time recognition by employing human recogniz-
ers in a Wizard of Oz manner (Fig. 4). GestureWiz was designed
based on a series of online experiments and user studies in the au-
thors’ lab. In one study, 12 participants worked in pairs to co-design
and test a novel gesture set. Part of the study required them to split

up and assume the roles of user and wizard to demonstrate and rec-
ognize gestures, respectively. GestureWiz implements techniques to
manage complex gesture sets by coordinating multiple wizards via
live streams, and achieves reasonable accuracy and latency for proto-
typing purposes. GestureWiz was also shown to support a variety of
gesture-based interfaces from the literature that previously required
complex system implementations. With GestureWiz, pairs of users
and wizards were able to co-design and test a gesture-controlled
slideshow prototype in less than 45 minutes.

Requester Interface

Wizard of Oz Interface

Figure 4: GestureWiz’s rapid prototyping interfaces for recording
(Requester Interface) and recognition (Wizard of Oz Interface) of
arbitrary and potentially multi-modal gesture sets, e.g., single-stroke,
multi-stroke, and mid-air 3D (adapted from [30])

6 CONCLUSION

We presented five classes of AR/VR authoring tools that differ in
the levels of fidelity in AR/VR and skill and resources required. The
rapidly growing landscape of tools leads to a number of problems
for non-technical designers when it comes to creating new AR/VR
experiences. For instance, tools that enable designing AR/VR scenes
without significant programming knowledge largely do not support
3D modeling or explicit interaction. Inspired by DART [18] and $1
recognizer [33], we started to explore two new tools to overcome
these limitations: ProtoAR [20], allowing designers to quickly and
easily create 3D models from physical props and integrate them into
mobile AR apps, and GestureWiz [30], which leverages Wizard of
Oz to provide advanced gesture recognition without model training
or programming.

However, there are still many challenges in creating better AR/VR
authoring tools. ProtoAR only supports basic AR content and cam-
era interactions. GestureWiz only uses Wizard of Oz for gesture
recognition, and relies on external cameras. More complex AR/VR
interfaces, however, can involve lots of interactive 3D objects react-
ing to both users’ explicit interactions (via touch, gesture, speech)
and implicit interactions (via device camera, inertial sensors, external
sensors). These are challenges the authors are currently addressing
by integrating the tools and developing new techniques as extensions
of ProtoAR and GestureWiz with the ultimate goal of providing
powerful examples able to fill the gap marked by “?” in Figure 1.

CODE AND DATA

ProtoAR will be made available to interested workshop participants
at https://protoar.com. The web site will provide access to
the source code, example applications, and instructional materials.
We also made code and data of GestureWiz available at https:
//github.com/mi2lab/gesturewiz.

ACKNOWLEDGMENTS

Thanks to the co-authors of the ProtoAR [20] paper, Janet Nebeling,
Ao Yu, and Rob Rumble.

REFERENCES

[1] B. Buxton. Sketching user experiences: getting the design right and
the right design. Morgan Kaufmann, 2010.

[2] M. Conway, S. Audia, T. Burnette, D. Cosgrove, K. Christiansen,
R. Deline, J. Durbin, R. Gossweiler, S. Koga, C. Long, B. Mallory,
S. Miale, K. Monkaitis, J. Patten, J. Pierce, J. Shochet, D. Staack,
B. Stearns, R. Stoakley, C. Sturgill, J. Viega, J. White, G. Williams,
and R. Pausch. Alice: Lessons learned from building a 3d system for
novices. In Proc. CHI, 2000.

[3] A. Cooper, R. Reimann, D. Cronin, and C. Noessel. About face: the
essentials of interaction design. John Wiley & Sons, 2014.

[4] N. Dahlbäck, A. Jönsson, and L. Ahrenberg. Wizard of oz studies: why
and how. In Proc. IUI, pp. 193–200, 1993.

[5] S. Dow, J. Lee, C. Oezbek, B. MacIntyre, J. D. Bolter, and M. Gandy.
Wizard of oz interfaces for mixed reality applications. In Proc. CHI
Extended Abstracts, 2005.

[6] S. Dow, B. MacIntyre, J. Lee, C. Oezbek, J. D. Bolter, and M. Gandy.
Wizard of oz support throughout an iterative design process. IEEE
Pervasive Computing, 4(4):18–26, 2005.

[7] A. J. Hunsucker, K. McClinton, J. Wang, and E. Stolterman. Aug-
mented Reality Prototyping For Interaction Design Students. In Proc.
CHI Extended Abstracts, 2017.

[8] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching interface
for 3d freeform design. In Proc. SIGGRAPH, pp. 409–416, 1999.

[9] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. A. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. J. Davison, and A. W. Fitzgib-
bon. Kinectfusion: real-time 3d reconstruction and interaction using a
moving depth camera. In Proc. UIST, pp. 559–568, 2011.

[10] B. Jackson and D. F. Keefe. Lift-off: Using reference imagery and
freehand sketching to create 3d models in VR. TVCG, 22(4), 2016.

[11] H. Kato and M. Billinghurst. Marker tracking and HMD calibration for
a video-based augmented reality conferencing system. In Proc. IWAR,
pp. 85–94, 1999.

[12] G. Kim. Early Strategies in Context: Adobe Photoshop Lightroom. In
Proc. CHI Extended Abstracts), 2007.

[13] G. Klein and D. W. Murray. Parallel tracking and mapping on a camera
phone. In Proc. ISMAR, 2009.

[14] B. Koleva, I. Taylor, S. Benford, M. Fraser, C. Greenhalgh,
H. Schnädelbach, D. vom Lehn, C. Heath, J. Row-Farr, and M. Adams.
Orchestrating a mixed reality performance. In Proc. CHI, 2001.

[15] E. Kruijff, J. E. Swan II, and S. Feiner. Perceptual issues in augmented
reality revisited. In Proc. ISMAR, pp. 3–12, 2010.

[16] Y. Lim, E. Stolterman, and J. D. Tenenberg. The anatomy of prototypes:
Prototypes as filters, prototypes as manifestations of design ideas. ACM
Trans. Comput.-Hum. Interact., 15(2):7:1–7:27, 2008.

[17] L. Liu and P. Khooshabeh. Paper or interactive?: a study of prototyping
techniques for ubiquitous computing environments. In Proc. CHI
Extended Abstracts, pp. 1030–1031, 2003.

[18] B. MacIntyre, M. Gandy, S. Dow, and J. D. Bolter. DART: a toolkit
for rapid design exploration of augmented reality experiences. In
Proc. UIST, 2004.

[19] B. Moggridge and B. Atkinson. Designing interactions, vol. 17. MIT
press Cambridge, MA, 2007.

[20] M. Nebeling, J. Nebeling, A. Yu, and R. Rumble. ProtoAR: Rapid
Physical-Digital Prototyping of Mobile Augmented Reality Applica-
tions. In Proc. CHI, 2018.

[21] I. Poupyrev, D. S. Tan, M. Billinghurst, H. Kato, H. Regenbrecht,
and N. Tetsutani. Tiles: A mixed reality authoring interface. In
Proc. INTERACT, pp. 334–341, 2001.

[22] M. Rettig. Prototyping for tiny fingers. Commun. ACM, 37(4), 1994.
[23] Y. Rogers, H. Sharp, and J. Preece. Interaction design: beyond human-

computer interaction. John Wiley & Sons, 2011.
[24] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavári, L. M.

Encarnaçao, M. Gervautz, and W. Purgathofer. The studierstube aug-

https://protoar.com
https://github.com/mi2lab/gesturewiz
https://github.com/mi2lab/gesturewiz

mented reality project. Presence: Teleoperators & Virtual Environ-
ments, 11(1):33–54, 2002.

[25] H. Seichter, J. Looser, and M. Billinghurst. Composar: An intuitive
tool for authoring AR applications. In Proc. ISMAR, 2008.

[26] C. Snyder. Paper prototyping: The fast and easy way to design and
refine user interfaces. Morgan Kaufmann, 2003.

[27] J. Song, G. Sörös, F. Pece, S. R. Fanello, S. Izadi, C. Keskin, and
O. Hilliges. In-air gestures around unmodified mobile devices. In
Proc. UIST, 2014.

[28] M. Speicher, J. Cao, A. Yu, H. Zhang, and M. Nebeling. 360anywhere:
Mobile ad-hoc collaboration in any environment using 360 video and
augmented reality. PACMHCI, 2:9:1–9:20, 2018.

[29] M. Speicher, B. D. Hall, A. Yu, B. Zhang, H. Zhang, J. Nebeling, and
M. Nebeling. XD-AR: challenges and opportunities in cross-device
augmented reality application development. PACMHCI, 2:7:1–7:24,

2018.
[30] M. Speicher and M. Nebeling. Gesturewiz: A human-powered gesture

design environment for user interface prototypes. In Proc. CHI, 2018.
[31] M. Speicher, K. Tenhaft, S. Heinen, and H. Handorf. Enabling industry

4.0 with holobuilder. In Proc. GI, 2015.
[32] E. M. Taranta II, A. Samiei, M. Maghoumi, P. Khaloo, C. R. Pittman,

and J. J. LaViola Jr. Jackknife: A reliable recognizer with few samples
and many modalities. In Proc. CHI, 2017.

[33] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without Libraries,
Toolkits or Training: A $1 Recognizer for User Interface Prototypes.
In Proc. UIST, 2007.

[34] F. Zhou, H. B. Duh, and M. Billinghurst. Trends in augmented reality
tracking, interaction and display: A review of ten years of ISMAR. In
Proc. ISMAR, pp. 193–202, 2008.

	Introduction
	Five Classes of AR/VR Authoring Tools
	First Class: Basic Mobile Screens & Interactions
	Second Class: Basic AR/VR Scenes & Interactions
	Third Class: AR/VR Focused Interactions
	Fourth Class: 3D Content
	Fifth Class: 3D Games & Applications

	The Trouble with Existing Tools
	Massive Tool Landscape
	Design Processes are Unique Patchworks
	Significant Gaps Within & Between Tools

	Case Study
	So, what's a better tool?
	Inspiration from DART
	Overcoming Limitations with Wizard of Oz
	Two Examples from the Authors
	ProtoAR: Quick & Easy Capture of AR Content
	GestureWiz: Prototyping Gesture Interactions for AR

	Conclusion

